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a b s t r a c t 

Occupant behavior in buildings has been considered the major source of uncertainty for assessing energy con- 

sumption and building performance. Modeling frameworks are usually built to accomplish a certain task, but the 

stochasticity of the occupant makes it difficult to apply that experience to a similar but distinct environment. For 

complex and dynamic environments, the development of smart devices and computing power makes intelligent 

control methods for occupant behaviors more viable. It is expected that they will make a substantial contribution 

to reducing global energy consumption. Among these control techniques, the reinforcement learning (RL) method 

seems distinctive and applicable. The success of the reinforcement learning method in many artificial intelligence 

applications has given an explicit indication of how this method might be used to model and adjust occupant 

behavior in building control. Fruitful algorithms complement each other and guarantee the quality of the opti- 

mization. However, the examination of occupant behavior based on reinforcement learning methodologies is not 

well established. The way that occupant interacts with the RL agent is still unclear. This study briefly reviews 

the empirical applications using reinforcement learning, how they have contributed to shaping the modeling 

paradigms and how they might suggest a future research direction. 
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. Introduction 

Building energy consumption amounts to approximately 30% − 40%

f all energy consumed in developed countries [ 1 , 2 ]. The trend of power

emand is still increasing. Not only does this increase the operating cost

f energy consumption, it also contributes to the increasing emission of

reenhouse gasses. Since buildings are also responsible for one-third of

lobal energy-related greenhouse gas emissions [3] , developing efficient

trategies for reducing the consumption of building energy are urgently

equired in the future. 

Maintaining occupant comfort and use of appliances by occupant

enerates 80% of building energy consumptions [4] . As is well known,

ccupant behavior is stochastic and complex. Even when an advanced

odeling method is built to include occupant behavior, it is challenging

o quickly apply that experience to a similar but distinct environment.

here is no general scientific standard outlining appropriate model val-

dation techniques especially when multiple behaviors are modeled [5] .

s an extreme case, in a simulation study of different models, occupant

ehavior with the feature of ‘random walk’ results in a very large per-

ormance gap [6] . It has also been recognized that a building could fail

o achieve the desired standards and building designers could miss out
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n the opportunity of optimizing building design and control for oc-

upancy [7] . Modeling occupant behavior may help to understand and

educe the gap between design and actual building energy performance

 8 , 9 ]. However, occupant models are usually context dependent [10] .

imply predicting or simulating occupant behavior in one setting has

ts intrinsic challenge in transferring the knowledge to a more complex

cenario. 

Studies of occupant behavior have been grouped into three streams:

ule-based models, stochastic models, and data-driven methods [11] . It

as been discussed that occupant behavior models do not represent de-

erministic events, but move into a field where behaviors are described

y stochastic laws [12] . Stochastic models consider the occupant be-

avior to be stochastic because behavior varies between occupants and

ay evolve over time [13] . Data-driven methods, however, are con-

ucted without an explicit aim to understand occupant behavior [11] .

 building’s physical environment is dynamic and complex. Occupants

an respond quickly to a change of the environment in a process that is

ften non-stationary. Attempts to model all possible features for build-

ng operation systems can be intractable and systems accommodating

ore features often have significant lag times. Data-driven methods do
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1 Full name of the conference: BUILDSYS 2019 - PROCEEDINGS OF THE 6TH 

ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT 

BUILDINGS, CITIES, AND TRANSPORTATION 
ot always set up physical models and often use historical data to char-

cterize features, including occupant behavior. 

Rather than on the understanding of occupant behavior, intelligent

ontrol methods used to optimize future reward in building systems

eem to be an alternative approach. These create an agent that learns

rom historical behaviors and is trained to adjust the control actions by

tilizing occupant behavior. The occupant interacts with the building

ontrol system via presence, actual activity and providing comfort feed-

ack through linked building systems, e.g. HVAC, lighting and windows.

hus, an optimal control method integrating building performance and

ccupant impact offers a novel way of modeling. In a control problem,

enerally, an agent is built to complete decision-making tasks in a sys-

em to achieve preset goal. Building control system, which is a com-

ound of multiple engineering fields, refers to centralized and integrated

ardware and software networks [14] and considers the improvement

f energy utilization efficiency, energy cost reduction, and renewable

nergy technology utilization in order to serve local energy loads while

eeping indoor comfort [15] . Control targets usually include shading

ystem, window, lighting system, ventilation, and heating/cooling sys-

em. 

A recently realized Markov decision process based machine learn-

ng method, known as reinforcement learning (RL), can work in both

odel-based and model-free environments [16] . Nevertheless, it is the

lassic model-free learning algorithms, such as Q-learning and TD ( 𝜆),

hat makes RL much more attractive and efficient in artificial intelli-

ence applications [17–20] . The effort to solve deep RL problems, for

xample [ 21 , 22 ], opens up the possibility of working on large contin-

ous datasets. The distinctive feature of RL is that the agent, via trial-

nd-error search, can make optimal actions without having a supervisor,

hich fits the goal of a control problem. 

These building control systems are able to make decisions based on

ata-driven modeling outcomes. The RL method is able to work in a

tochastic environment and to adapt existing data to extract underlying

ogic for decision-making, that is, a data-driven method. The agent of RL

reats occupant behavior as an unknown factor and learns to adapt it-

elf form what has been observed of human interactions. The RL method

as been in existence for over seventy years, but it was not until the past

ecade that researchers started to commit themselves to expanding its

pplications. Neither systematic approaches to applying RL on occupant

ehavior nor relevant literature reviews have been analyzed from the

ethodological point of view. The indication for future RL application

s still unclear. Therefore, the aim of this study is to review the empir-

cal articles on how RL methods have been implemented for adjusting

ccupant behavior in buildings, and provide instructive directions for

uture research. 

Thus, contributions of this study are threefold. Firstly, we present

he results of our literature search and identify the key points emerging

rom this research topic in recent years. Secondly, we provide a com-

rehensive understanding of how RL works for building control and an

verview of its implementation requirements. Finally, we identify the

urrent research gap surrounding building control and propose future

esearch ideas for modeling occupant behavior. 

In the second section of this study, we present the literature search-

ng scope and the outcomes. In Section 3 we briefly introduce the phi-

osophy of RL and its corresponding algorithms. Section 4 then ana-

yzes the empirical articles. A discussion is presented in Section 5 and

ection 6 concludes with some findings and possible new research di-

ections . 

. Methods and search outcomes 

.1. Methods 

We conducted our literature search using the search engine Scopus.

he first reason is that it provides us with multiple document features

hat we can adjust such as funding details and conference information.
138 
he second reason is that an interface to the R package bibliometrix, an

pen-source tool for executing science mapping analysis, can be created

or conducting analytical bibliometrics where three steps are considered

or the workflow [23] . In step 1, data is loaded and converted to the R

ata frame. In step 2, the descriptive analysis and citation networks are

roduced; the visualization is made available in step 3. 

Our searching keywords and operations are 

( ( "reinforcement learning" OR "Q-learning" OR "policy gradi-

nt" OR "A3C" OR "actor-critic" OR "SARSA 

∗ " ) AND "occupant ∗ "

, where some prevalent algorithms for RL, for example, Q-learning

nd policy gradient, are also included to guarantee adequate cover-

ge. Adding the wildcard to occupant ∗ ensures hits using both singular

nd plural forms are returned. The same was done for SARSA 

∗ because

here are a number of variants of the SARSA algorithm that can be used

or some algorithm-specific articles. We exclude the words behavior ∗ 

r behavior ∗ because the RL agent does not only take action based on

articular behaviors, but also adjusts its policy by collecting occupant

eedback for the control system. We do not limit the search by article

ype or publication year. 

.2. Search outcomes 

The original search returns a total number of forty articles. One of the

election criteria was that articles where either the occupant behavior or

ccupancy was explicitly considered as an element in a Markov decision

rocess (see Section 3.1 ) or had an impact on the transition of environ-

ental states were included. In other words, an agent that tried to learn

he optimal control strategy only to satisfy occupant comfort and did

ot include dynamic interactions with the environment was excluded

rom this analysis. See a relevant review work [24] that examined the

L control for occupant comfort for more articles that we exclude here.

areful reading of each of the forty articles resulted in thirty-two articles

hat are considered for this analysis. Even though it is not exhaustive,

he outcome of this search, we believe, can form a representative sample

f current understandings within the field. 

.2.1. Publication sources 

The thirty-two documents were published in twenty-three difference

ources including international journals, conference proceedings and

ook chapter. A summary of the top five publication sources from the

earch is shown in Fig. 1 . Most of the articles were published in the El-

evier journal Building and Environment , followed by a second Elsevier

ournal Energy and Buildings and the Buildingsys 2019 1 conference. Each

f remaining eighteen sources has published one article. Even though

ull-text articles of some publications are not included in the Scopus

earch engine, the long-tailed Poisson-like distribution for publication

ources covers a range of topics including energy, building, computer

cience, optimal control, sustainability and engineering. The variety of

ublication sources establishes a multidisciplinary collaborative frame-

ork for future studies. We also anticipate that the emergence of new

ublication sources may attract studies of RL for occupant behavior and

ncrease public awareness of the topic. 

.2.2. Publication types, years and citations 

Of the total articles in this search, the earliest was published in 2007.

fter that, no article was published until 2013 ( Fig. 2 ). This strongly sug-

ests that difficulties in the implementation of complex problems has

indered the development of RL applications. The success of many deep

earning paradigms in the early 2010s, however, seems to have pro-

oted a revival of the use of RL applications, including those in build-

ng control. It has generated the publication of a number of articles by
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Fig. 1. Top five publication sources. 

Fig. 2. Type and year of publication and number of citations. 
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using deep RL for solving complex problems. Nevertheless, overall ci-

ations are still low. More attention could be paid to this RL literature

hen intelligent control systems for occupants are developed. 

.2.3. Country collaboration 

Collaboration between countries allows researchers to share knowl-

dge, data and research infrastructures. The development of RL con-

rol for occupant behavior has just started to be noticed and needs

orldwide collaboration for fast growth. Most historical collaborations

ave been carried out between researchers in the United States and

ome countries in Europe, as well as in China ( Fig. 3 ). These three re-

ions/countries will likely take the lead in future contributions to the

opic. In the meantime their pioneer activity is setting the stage for com-

rehensive impacts from other regions and countries. 

. The reinforcement learning method 

Various studies have reviewed the classification of different control

ethods in buildings. For example, Shaikh et al. [14] reviewed the in-

elligent control system for building energy and occupant’s comfort,

hereas Dounis and Caraiscos [25] focused on the agent-based control

ystem. Aste et al. [26] summarized the model-based strategies for build-

ng simulation, control and data analytics. The previous surveys provide

 framework of how the different methods relate to each other and the
139 
ros and cons of each. A generic challenge of conventional methods

e.g. PID, on-off, model predictive control, etc.) lies in the difficulty of

ncluding all unknown environmental factors in the models. Even there

s much room to increase model performance, complex model specifica-

ions usually bring heavy computations [27] . 

Compared to the conventional methods the RL technique is still not

ell developed for buildings. It has not drawn much attention and the

erformance of RL algorithms has thus not been evaluated yet. Even

hough Royapoor et al. [28] realized that RL methods are notable, a

ramework of implementations and explorations on efficient RL methods

eeds to be systematically investigated and discussed. 

The shortage of scientific research publications prevents building

sers, building managers, device controllers, energy agencies and other

elated parties from being aware of the neglected technique. An inte-

ration with explicit occupant behavior has not been comprehensively

xamined. The curse of dimensionality, the fact that the number of rep-

esentative environment states grows exponentially with complex prob-

ems, is an inherent problem. Approximate solution methods provide

he possibility to overcome this. Deficient consideration of it hinders the

evelopment of solutions. Thus, the necessity for investigating current

tudies and indicating future studies first requires an overview. 

The idea of RL derives from the concept of “optimal control ”, which

merged in the 1950s as a way of formulating problems by designing

 controller to minimize a measure of the behavior of a system over
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Fig. 3. Country collaboration map. 

Fig. 4. The interaction between agent and environment in an MDP. 
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2 The Monte Carlo method and dynamic programing method are also value- 

based. See [29] for more details. 
ime [29] . Bellman [30] came up with the concept of Markov decision

rocesses (MDPs) or finite MDPs, a fundamental theory of RL, to formu-

ate optimal control problems. Unlike conventional control methods, RL

oes not require a model. A benefit of a model-free approach is that it

implifies the problem when the system is complex. Different from inde-

endent and identically distributed (i.i.d.) data that some conventional

odels require, the RL agent receives subsequent reward signals from

ts actions. Another benefit is that the trade-off between exploration and

xploitation can be balanced via experiment design. Furthermore, a rich

lass of learning algorithms fused with deep neural networks [20] pro-

ide a potential for accurate estimation of value functions. 

.1. Markov decision processes 

In a dynamic sequential decision-making process, the state 𝑆 𝑡 ∈  of

 RL agent refers to a specific condition of the environment at discrete

ime steps 𝑡 = 0 , 1 , …. By realizing and responding to the environment,

he agent chooses a deterministic or stochastic action 𝐴 𝑡 ∈  that tries

o maximize future returns and receives an instant reward 𝑅 𝑡 +1 ∈  as

he agent transfers to the new state 𝑆 𝑡 +1 . A sequence of state, action and

eward is generated to form an MDP ( Fig. 4 [ 24 , 29 ]). 

The Markov property highlights that the future is independent of

he past and depends only on the present. In Fig. 4 , S t and R t are the

utcomes after taking an action and are considered as random variables.

hus, the joint probability density function for S t and R t is defined by:

 

(
𝑠 ′, 𝑟 |𝑠, 𝑎 ) = ℙ 

[
𝑆 𝑡 = 𝑠 ′, 𝑅 𝑡 = 𝑟 | 𝑆 𝑡 −1 = 𝑠, 𝐴 𝑡 −1 = 𝑎 

]
, (1)

here 𝑠, 𝑠 ′ ∈ , 𝑟 ∈  and 𝑎 ∈  . It can be seen from Eq. (1) that

he distribution of state and reward at time t depends only on the

tate and action one step before. From Eq. (1) , it is straightforward

o obtain the transition probabilities 𝑝 ( 𝑠 ′|𝑠, 𝑎 ) and the expected reward

 ( 𝑠, 𝑎 ) = 𝔼 [ 𝑅 𝑡 |𝑆 𝑡 −1 = 𝑠, 𝐴 𝑡 −1 = 𝑎 ] that are used for formulating the Bell-

an optimality equation in Section 3.3 . 
140 
.2. Policies and value functions 

A policy 𝜋 is a distribution over actions given states and can be con-

idered as a function of actions. It fully defines the behavior of an agent

y telling the agent how to act when it is in different states. An arbitrary

olicy targets on evaluating the expected future return when making an

ction a from time t : 𝐺 𝑡 = 𝑅 𝑡 +1 + γ𝑅 𝑡 +2 + γ2 𝑅 𝑡 +3 + … under a given state

 , where 0 ≤ 𝛾 ≤ 1 is the discount parameter, namely: 

 𝜋( 𝑠, 𝑎 ) = 𝔼 𝜋
[
𝐺 𝑡 |𝑆 𝑡 = 𝑠, 𝐴 𝑡 = 𝑎 

]
 𝔼 𝜋

[ ∞∑
𝑘 =0 

𝛾𝑘 𝑅 𝑡 + 𝑘 +1 |𝑆 𝑡 = 𝑠, 𝐴 𝑡 = 𝑎 

] 
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈  𝑎𝑛𝑑 𝑎 ∈  . 

(2) 

The task of finding the optimal policy in Eq. (2) , 𝜋∗ , is thus achieved

y evaluating the optimal action-value function q 𝜋( s , a ): 

 ∗ ( 𝑠, 𝑎 ) = max 
𝜋

𝑞 𝜋( 𝑠, 𝑎 ) . (3)

.3. Value-based algorithms 

Strategies to solve Eq. (3) are usually achieved by updating the Bell-

an optimality equation [31] : 

 ∗ ( 𝑠, 𝑎 ) = 𝑟 ( 𝑠, 𝑎 ) + 𝛾
∑
𝑠 ′∈ 

𝑝 
(
𝑠 ′|𝑠, 𝑎 )max 

𝑎 ′
𝑞 ∗ 
(
𝑠 ′, 𝑎 ′

)
. (4)

The recursive relationship assists in splitting the current action-value

unction into the immediate reward and the value of the next action.

q. (4) directly provides us with the formulation of value-based algo-

ithms within temporal-difference method, 2 where either tabular meth-

ds or approximation methods can be adopted for obtaining q ( s , a ).

here is always an explicit state exploration of state-action space for

alue-based algorithms. 

For problems with small and discrete state or state-action sets, it is

referable to formulate the estimations using look-up tables with one

ntry for each state or state-action value. The tabular method is easy to

mplement and guarantees convergence [29] . The tabular Q-learning al-

orithm [32] is the most common RL algorithm used in building control

24] . Easy implementation and accurate solutions make it robust in dif-

erent building control problems. Other tabular algorithms include tab-

lar SARSA, i.e. the so-called state–action–reward–state–action, value-

teration, and policy-iteration. 

For large MDP problems, we do not always want to see separate

he trajectory of each entry in the look-up table. The parameterized

alue function approximation 𝑞 ( 𝑠, 𝑎 ; 𝐰 ) ≈ 𝑞 𝜋( 𝑠, 𝑎 ) gives a mapping from

he state-action to a function value, for which there are many mapping

unctions available, for example, linear combinations, neural networks,
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nd so on. It generates the state-actions that we may not directly ob-

erve. A common way of updating the weight vector, w , is the gradient

escent, which yields deep Q-learning. Algorithms like SARSA ( 𝜆) and

tted Q-iteration can also be found in the earlier studies. More recently

eveloped value-based algorithms [33] have also provided a great num-

er of opportunities for training the agent in a more flexible way. 

.4. Policy-based and actor-critic algorithms 

Another way to solve large MDP or continuous state RL problems

s to apply the policy-based method [34] , where the policy is explicitly

epresented by its own function approximator, independent of the value

unction, and is updated according to the gradient of expected reward,

 ( 𝜃) = 𝔼 𝜋∼𝑝 𝜃 ( 𝜏) [ 𝑟 ( 𝜏) ] , (5)

ith respect to the policy parameters 𝜃. r ( 𝜏) is the total reward for a

iven trajectory 𝜏, representing the interactions between the agent and

he environment in an episode. p 𝜃( 𝜏) depicts the probability of getting a

pecific 𝜏 from a stochastic environment under fixed 𝜃. The approach to

nding optimal J can be converted to solve the maximization problem

sing gradient ascent with regard to a set of parameters 𝜃, for example,

he weights and biases in a neural network. The policy-based method has

n innate exploration strategy and the variance of the gradient is large

or episodes with long time steps. Some recent algorithms such as Prox-

mal Policy Optimization [35] and Trust Region Policy Optimization

36] have been developed for complex problems. Subtracting a baseline

 from r ( 𝜏) may reduce the variance while keeping the gradient still un-

iased. One option is to apply the state-value 𝑣 𝜋( 𝑠 ) = 𝔼 𝜋[ 𝐺 𝑡 𝑆 𝑡 = 𝑠 ] to the

olicy gradient methods, known as an actor-critic algorithm. These algo-

ithms work with parameterized policies by relying exclusively on value

unction approximation [37] . In practice, the actor-critic algorithms use

eep neural networks to estimate the value function [ 38 , 39 ]. 

.5. RL for building control 

It has been challenging to apply the trained RL agent to buildings

rrespective of the type occupant behavior due to rigorous training re-

uirement, control security and robustness, and the ability of method

eneralization [40] . However, real implementations may validate and

mprove the method by observing reliable state transitions and reward

ignals. Appropriate specifications of state, action and reward in MDP

ave significant impacts on learning outcomes and practical settings. 

The states partly determine the complexity of RL control problems. In

uilding applications, states are mostly defined by the variables that are

ssociated to physical environment and weather condition for a build-

ng, for example, outdoor temperature, airflow rate, indoor CO 2 level

nd so on. Sufficient changes in state variables will alter indoor com-

ort level and energy use, which also update building environment for

L agent to take action. Accurate representation of states will lead to

fficient training process and avoid curse of dimensionality. For contin-

ous state or state with large number of levels, building environment

ecomes too complex to get fully explored. Dimension reduction is an

lternative way for resolving the problem [41] . However, it is a collab-

rative work between building management expert and data scientist to

gure out applicable state representation. 

The action of an agent is taken based on observed state and the ac-

ion levels can also affect the problem complexity. For a building system,

ontrolling HVAC (heating, ventilation, and air conditioning) is the most

omplicated due to various components and control levels [40] . Actions

ike setting constant temperature set point or airflow rate will cause high

nergy use, because room occupancy change, outdoor environment and

re-heating/cooling strategy may also generate effects to HVAC perfor-

ance and energy use. Typical actions of an RL agent do not only try

o immediately improve current reward, but also aim to maximize fu-

ure return. For simpler control problems, for example, window open-
141 
ng/closing [42] , action can also be generalized to a continuous domain,

hich requires more efforts on making acceptable simplifications. 

Two types of rewards have been examined in most of the studies:

omfort level and energy saving. It seems that occupant comfort gets

ore priorities when optimization is considered for these two contra-

ictory factors in developed areas. Nevertheless, reward is more related

o contextual, psychological, physiological, and social background of an

ccupant. Using same comfort criteria to different individuals will bring

ias to learning process. It is also reasonable to take γ = 1 indicating that

ime factor will not give any discount to future comfort. 

. Empirical articles of RL control for occupant behavior 

In this section, we will scrutinize the RL applications in two cate-

ories: those where occupant behavior or occupancy is explicitly charac-

erized as a state, action or reward in the MPD; and those which not use

ccupant behavior to directly train an agent, but interact with the envi-

onment by adjusting the state transition, estimating the disturbance of

eward, providing feedback and changing occupancy schedules. 

.1. Occupant behavior in MDP 

Nine representative articles were selected to illustrate the first cate-

ory of applications. Their workflows are summarized in Table 1 where

ccupant behavior or occupancy interacting with RL agent will be exam-

ned in detail. We also present a breakdown of the specific state, action,

eward and algorithms each application uses. 

There is always some doubt when selecting state variables. Selecting

oo many will increase the learning inefficiency exponentially while se-

ecting too few will not fully depict the Markov property. Thus, evaluat-

ng the computation power and model accuracy should be considered for

aking a selection balance. Looking at the actions made on the build-

ng systems, the main interventions have been taken with the HVAC

ystem, which directly contributes to affecting occupant thermal com-

ort and indoor air quality. It is not surprising that comfort and energy

onsumption are the most studies objectives, represented by reward, for

ifferent learning tasks. Incorporating learning efficiency to the reward

lso provides us with innovative method in designing the experiment

43] . 

.1.1. Occupant behavior as a state for HVAC control 

Most of the applications focused on controlling HVAC by setting oc-

upancy as the state [ 44 , 46 , 47 , 50 ]. This was because the occupant’s

chedule usually followed a fixed routine or could be predicted with

tochastic models. For example, Barrett and Linder [50] developed a

VAC control system by including the prediction of occupancy, where

 modified Bayes rule was applied. Initial prior probability and environ-

ental experience were used to obtain the posterior probability. The

redicted occupancy followed a multinomial distribution of occupancy

or specific times and returned a binary outcome of true and false. 

One of the recent studies [44] added expert experience when they

onsidered occupancy as one of the states to control HVAC, where the

vailability of state-action pairs helped to initialize the neural network

nd expert policy was used as a baseline for better policies. Valladares

t al. [46] believed that occupant has strong influence on CO 2 level and

ncluded the number of occupants as one of their states, arguing that

O 2 control requires additional fresh air from the outside environment

nd increases HVAC loading. Simulations were carried out in their initial

tudy using between 2 and 10 occupants, a number that was extended to

0 occupants in a subsequent study. A pre-training loop was used for the

xploration of state-action pairs to guarantee that the agent was able to

bserve sufficient information for deep Q-learning. Combined with su-

ervised learning for estimating energy consumption given occupant ac-

ivity, Marantos et al. [47] developed a Neural Fitted Q-iteration, where

he Q function was represented in parametric form by a multi-layer per-

eptron. 
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Table 1 

Occupant behavior in MDP. 

References State Action Reward Algorithms 

Jia (2019) [44] occupancy , room 

temperature, weather, 

time of day, energy 

consumption 

supply air temperature energy and comfort policy gradient 

Park (2019) [45] occupancy , light switch 

position, indoor light 

level, time of a day 

switching lights on/off, 

doing nothing 

energy and comfort value iteration 

Valladares (2019) [46] number of people, 

indoor/ ambient 

temperature, levels of 

CO 2 , PMV index, etc. 

setting temperature 

and ventilation system 

CO 2 levels, PMV index, 

and power 

consumption 

deep Q-learning and 

double Q-learning 

Marantos (2019) [47] occupant’s existence, 

number and activity, 

indoor/outdoor 

temperature, humidity, 

solar radiation, etc. 

temperature set-point thermal comfort and 

energy 

neural Fitted 

Q-iteration 

Kazmi (2018) [43] environment including 

occupant behavior , 

embodied energy 

content of vessel, 

heating mechanism 

reheating the storage 

vessel or not 

comfort, energy, 

exploration bonus 

model-based RL 

Lee (2018) [48] occupant’s feeling of 

cold, comfort, and hot 

occupancy, occupant’s 

overriding the set point 

point tracking error 

and energy 

policy gradient 

Zhang (2018) [49] occupancy, day of the 

week, hour of the day, 

outdoor air 

temperature, outdoor 

air relative humidity, 

etc. 

supply water 

temperature set point 

energy demand and 

indoor thermal 

comfort 

Asynchronous 

Advantage Actor-Critic 

(A3C) 

Barrett (2015) [50] occupancy , room 

temperature; outside 

temperature 

turning on/off heating 

turning on/off cooling 

indoor temperature, 

energy 

Q-learning 

Fazenda (2014) [51] time that the system 

has been in operation, 

lifetime desired for the 

system, heating on/off

on/off heating/cooling:, 

temperature set points, 

opening windows 

user interaction of 

thermal comfort , 

energy 

Q-learning with 

function approximator 
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.1.2. Occupant behavior other than as a state for HVAC control 

In addition to setting occupancy as the state, Zhang and Poh [49] also

sed a smart phone app to collect thermal preferences from the occu-

ants. The RL agent figured out the control policy by using the collected

eedback. A Bayesian model calibration was implemented for heating

nergy demand and average indoor air temperature before training RL

gent. The training was carried out in OpenAI Gym with customized

esign, which provides them with flexible options to build an RL agent.

Besides occupancy, other studies used occupant’s feeling of cold,

omfort, and hot as a state. One simulation-based work [48] also in-

luded occupancy, as represented by uniform distribution, and the oc-

upant’s override at a set point, as actions. A sample average method was

eveloped for approximating the gradient, a method that was shown to

e applicable for complicated stochastic problems. The occupant’s inter-

ction with the thermostat was also set as the reward in one study, where

he behavior of the occupant was simulated with “out ”, “working ”, and

uncomfortable ” [51] . All of these studies, however, are based on the

ssumption that occupant behavior stays constant. If occupants change

heir behavior from time to time, the learning outcomes demonstrated

ere may fail to work. 

.1.3. Control for lighting and vessel 

Two of the studies used lighting and vessel control respectively as a

ay to explore occupant behavior. In a study of lighting control [45] ,

ccupant was detected by smart device. Their feedback on the control

as collected through a survey. RL agent was able to gather the infor-

ation and the learning were continuously updated to adapt the control

arameters via occupant interactions. It has been discussed that the de-

eloped method can also control a dimmable light. For vessel control

43] , future occupant behavior was modeled as an uncontrollable en-

ironmental factor for hot water consumption. This was because of the
142 
imitations of the prediction model. Nevertheless, the study did show

hat specific behavior can be learnt from data and that the RL agent was

ble to adapt the policy. 

.2. Indirect influence of occupant behavior on MDP 

In contrast to the studies that directly characterize occupant behav-

or in MDP, there are various ways for the occupant to influence the

uilding control method. The RL agent in these studies optimizes its pol-

cy not by taking occupant behavior as an immediate input to MPD, but

y measuring its indirect effect on the system. A summary of the liter-

tures generates three categories for understanding occupant behavior:

ccupancy, actual behavior and providing feedback to the control sys-

em. For MDP, occupant behavior can have an effect on changing the

tate or state transition. In most of the studies, occupant behavior can be

odeled as a stochastic factor to adjust the reward. Only a few studies

ssociated occupant behavior with action. Detailed references for each

pplication are shown in Table 2 . For the building systems, HVAC is the

ostly examined one, because it makes a substantial contribution to

ccupant thermal comfort and indoor air quality. RL controls for light-

ng, window and vessel, for example, are relatively uncommon in the

xisting literature; this gap should be addressed in future studies. 

.2.1. Actual behavior and state 

Actual behavior includes any activities that occupants carry out to

nteract with the building system, for example, using hot water, turning

n the light, and opening the window. The stochastic behavior will lead

o frequent updates of the state in the Q-table. As some studies show, the

nclusion of actual behavior in controlling vessels seems to be a viable

pproach [59–61] . Occupant behavior together with current state and
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Table 2 

Indirect influence on MDP. 

Interactions MDP 

State/state transition Reward Action 

Occupancy – HVAC ( [52–56] ); HVAC and 

window ( [57] ); HVAC, lighting, 

blind and window ( [58] ) 

–

Actual behavior vessel ( [59–61] ); PV system 

( [62] ); lighting ( [63] ) 

HVAC ([ 53 , 64 ]); vessel ( [65] ); 

space heating ( [66] ); lighting 

( [63] ) 

HVAC ( [67] ) 

Feedback – HVAC([ 68 , 69 ]) –
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ction, contributing to the state transition, can be modeled as a stochas-

ic time series sequence using real world occupant behavior when the RL

gent develops its policy [61] . Occupant behavior was considered as a

erturbations of the vessel states: energy content inside the storage ves-

el and temperature [59] . The state transitions were modeled based on

his assumption. Higher hot water consumption might require shorter

pisodes to preserve occupant comfort. A SARIMA model learned oc-

upant behavior, with adjustments for the seasonality of individual oc-

upant demand. Similarly, individual occupant behavior, or consump-

ion profiles, was modelled, which defines vessel state transitions [60] .

ccupant models were built to offer additional insight into individual

ccupant behavior types and were used for clustering households. The

ARIMA models also provided reliable predictions for houses with regu-

ar consumption patterns. Non-stationary, nonlinear and highly irregu-

ar consumption profiles were dealt with using the additional bias term.

n these case, different occupant behavior might be the reason for the

ariance of energy savings. 

The RL method has also been applied to photovoltaic systems. In

62] , stochastic occupant behavior capturing tap water use was included

n a heat pump buffer model. It was counted as energy loss to the en-

ironment. The tap water model used historical data to relate occupant

ehavior to hot water demand. This historical data was used to construct

 conditional probability, but it could also be used to generate samples of

ccupant behavior. Besides the stochastic occupant behavior associated

ith hot water consumption, other behaviors, such as those associated

ith the use of cooking appliances, lighting, washing machines enter-

ainment devices and other electrical loads, could also be studied. Occu-

ant behavior is the result of complex decisions that are dependent on

npredictable personal factors. One study used a hidden Markov model

HMM) to demonstrate occupant behavior around light usage, where a

L was applied without the need to consider hidden states [63] . The

uthors considered the whole building as a set of spaces and for each

pace the occupant occupied a HMM. 

.2.2. Actual behavior and reward 

The studies reviewed here also show that occupant behavior can af-

ect the reward. For example, using hot water and having the lights on

t the same time can increase energy consumption. When the RL agent

pecifies the reward, insufficient consideration of human activities can

ead to errors. Because it is very challenging to develop explicit phys-

cal models that are both accurate and fast, deep RL (DRL) algorithms

re necessary to adapt for occupant activities [64] . A deep determinis-

ic policy gradient was developed for a HVAC system in [53] . Occupant

ehavior was concluded to affect the reward in two ways. First, the sys-

em was set to occupied and unoccupied periods. The unoccupied spaces

id not have to maintain thermal comfort. Second, variable-air-volume

oxes controlling the volume of conditioned air were installed based

n the set points set by the occupants. These provide more accurate

ir temperature controls. The percentage of discomfort occupants in the

xperiment experienced was represented by averaging the sensor read-

ngs from the boxes. In this study, the authors used a long-short-term-

emory (LSTM) method to model historical HVAC operational data in

rder to build a training environment for the DRL agent to interact with.
143 
n the LSTM, the environment took the state and the action chosen by

he DRL agent as inputs and returned the new state and reward for ac-

ion as outputs. The DRL agent was able to learn the optimal control

olicy for a HVAC system by interacting with the training. 

For studies that considered heating systems, the profiles of individ-

al occupant behavior were averaged and then applied to simulate the

esults [65] . When this was done the SARSA( 𝜆) algorithm was then able

o learn the desired behavior – the occupant’s domestic hot water use

 to enhance the heating cycles. The results, however, showed a large

ifference in the number of heating cycles between the individual and

veraged profiles. This was due to individual occupant behavior. Occu-

ants’ clothing insulation and activity level, such as sitting, cooking or

leeping, were used to calculate Predicted Mean Vote (PMV) [66] . The

imulations considered the number of occupants and their metabolic

ate. Typical behaviors during the week (working or studying during

he day, eating dinner at home) and activities during the weekend were

lso simulated to evaluate energy consumption. Because occupants may

eel and act differently and wear different clothes, room temperature

as to be adjustable to obtain good thermal comfort. 

.2.3. Occupancy and reward 

Occupancy is a more general concept where actual occupant behav-

or is not formulated. A number of occupancy detection methods have

een be developed [70–72] . From these techniques, it is now possible

o identify if a room is occupied or not and how many occupants it has.

ike actual behavior, the level of occupancy is also a stochastic factor to

e rewarded. In one study of HVAC systems, the transition function of

he MDP was assumed unknown to the agent [52] . The occupants were

ssumed to affect the CO 2 concentration and to generate heat emission.

hen the occupancy level changed, the RL agent had sense this change

nd adjust the CO 2 levels and temperature accordingly. The reward, in-

luding CO 2 , thermal and energy, was calculated based on a negative

igmoid function. More simply, the indoor air quality was modeled in

roportion to the number of occupants [54] , where a 24 h period was

sed to form an episode in which the number of occupants in a build-

ng could change. In the simulation, two peak periods for the number

f occupants and CO 2 concentrations were found, one at approximately

:00 am and one at 7:00 pm. 

Besides air quality, one of the studies examined thermal comfort in

 single-family residential home [55] . The authors assumed that the oc-

upants were at home between 6pm and 7am the next day and that the

ouse was unoccupied between 7am and 6pm. Thus, the RL agent tried

o keep a desired temperature range whenever the occupants were at

ome, and remained indifferent to home temperature when the occu-

ants were out. The setting led to a straightforward setback strategy

hat turned the system off when the occupants were out and turned it

ack on once the occupants were at home. Occupancy schedules and

ounts were used as a future disturbance in another recent study [56] .

y the end of the experiment, the agent was able to perform well, ir-

espective of the number of occupants. In this study, occupancy count

as not an initial part of the model the authors used for the real test.

hen examining the results, however, they found that the amount of

ooling required varied drastically with the number of occupants and so
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Table 3 

Comparison of simplification methods. 

Benefit Weak point 

Variable discretization easy to implement; problem can quickly become simple may lose important information 

Dimension reduction able to capture all features inaccurate description to original data 

Function approximation efficient for really complex problem not easy to find perfect function 
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ccupancy count was added to their subsequent calculations. Another

pproach is to replace default occupancy schedules with actual occu-

ancy schedules collected from real target buildings [58] . This system

as installed in a test building and the collection of accurate occupancy

attern data at the zone level was then obtained. The RL control system

eveloped in this case could also accept occupants’ feedback allowing it

o train the agent where only minor modifications were needed. 

.2.4. Feedback and reward 

Providing comfort feedback to the control system makes RL agents

eact more efficiently. Even though comfort standards, for example ther-

al comfort [73] , can help RL agents to figure out the appropriate com-

ort level, this can be challenging because of data availability and indi-

idual variation. 

In one study an adaptive occupant satisfaction simulator was used as

 measure of user dissatisfaction that originated from the direct feedback

f the building occupants [69] . Every time a signal from the simulator

ecame available, the simulator was updated to incorporate the new

nformation. It should be noted that this study was the earliest publica-

ion in our document set. The learning speed was slow and the agent was

till making errors after four years of training. For example, it was still

urning on the heating in summer and cooling during winter. This may

ave been because the exploration was not enough. It may also have

een because the use of the recursive least-squares algorithm TD ( 𝜆) re-

uires high computational demands and large amounts of memory. Fur-

her training should eliminate these wrong decisions. On the positive

ide, this study clustered thermal conditions to produce homogeneous

nvironments, where the classification was implemented to predict the

evel of thermal comfort by using the state space, including clothing

nsulation, indoor air temperature and relative humidity [68] . A confu-

ion matrix was then created to evaluate its performance. It formed a

unction mapping the state to the reward, which enabled the occupant’s

eedback to be collected by the RL agent for HVAC control. This ap-

roach was able to reach the optimal policy from any start state after a

ertain number of episodes. The authors pointed out that when new oc-

upant provides feedback to the agent, the model needs to be calibrated

or new training. 

.2.5. Actual behavior and action 

There are a limited number studies considering occupant behavior

s an indication to action, because optimal action is usually learnt by

he agent. One exception is to make recommendations [67] . Occupants’

istorical location and the shift schedule of their arrival and departure

imes was used for operational recommendations. The occupants’ loca-

ion preferences, consisting of the distribution of time over the spaces,

ere extracted.by using historical data. Location data was also extracted

or the arrival and departure times of each occupant. The occupants

ould change location after receiving a move recommendation. The Q-

able was maintained for learning both move and shift schedule recom-

endations. 

.3. Training RL agent with deep neural networks 

Curse of dimensionality refers to high number of levels for state vari-

ble or continuous state, which hinders efficient exploration of the state

pace and leads to insufficient learning. In Table 3 , three types of sim-

lification methods are compared for their pros and cons. For value-

ased methods with continuous state, variable discretization takes a set
144 
f single values to represent the whole state space [ 50 , 54 , 63 ]. However,

ncluding too many such type of variables may easily lose important in-

ormation in the data and increasing the size of the data will not help

o compensate the loss. On the other hand, dimension reduction aims

o utilize all dimensions in the variable space to extract principal fea-

ures that are in relatively low dimensions [41] . Although larger amount

f data can utilize more information and extract more representative

eatures, bridging the extracted features to the original values is not

traightforward and thus the policies may be misleading. 

Artificial neural networks are widely used for nonlinear function ap-

roximation. It is a network of interconnected units that have some of

he properties of neurons, the main components of nervous systems.

unction approximation avoids to create a look-up table to store action

alues. Instead, approximate value is represented as a parameterized

unction. Actions are quickly generated by using a neural network to

ap the state into a set of action-value pairs [51] . The number of hid-

en layers in a neural network is associated to the degree of nonlinear

ransformations. Neural network with high number of hidden layers in-

icates more sophisticated mathematical modeling and better mapping

bility, which is also known as deep neural network (DNN). A direct

pplication is to extend Q-learning to deep Q-learning where the de-

and of data is high [ 46 , 64 ]. Insufficient data input to DNN is not able

o optimize thousands of parameters in DNN. Thus, high quantity and

uality of data guarantees the convergence of the loss function for a

NN. An alternative way to overcome the data insufficiency is to ap-

ly transfer learning technique by freezing most layers of a deep neu-

al network that are pre-trained on data from other source. The model

an be then re-trained with much less trainable parameters from the

arget data. The performance of this transfer learning deep neural net-

ork model will keep improving over time while more operational data

re streaming into the model [74] . For policy-based implementations

 53 , 56 , 75 ], the parameters in the policy network, 𝜽, connect the DNN

ayers in Eq. (5) . Unlike deep Q-network, policy network maps a state

o an action that maximizes the expected reward from sampled trajec-

ories. Training policy DNN requires intensive experiments to generate

ctual behaviors, which is time-consuming and costly in terms of data

ollection. In Section 5 , we will discuss the details of implementing an

lternative off-policy strategy. 

.4. The algorithms 

Algorithm selection is problem dependent. For problems with small

tate-action space, value based algorithms are preferred because the op-

imization can converge quickly. For problems with large state-action

pace, creating a table to update learnt action values is not feasible. For

uilding control applications, it is common to adopt continuous vari-

bles such as temperature, solar radiation, and occupancy duration for

he analysis. Discretization to such variables may mitigate the problem,

ut can also generate bias. Thus, variants of Q-learning algorithms and

olicy-based algorithms have emerged as ways to achieve more explo-

ation to the state space. As seen in Fig. 5 , tabular Q-learning is still the

ost commonly used algorithm any more, but the relative frequency

f this has reduced in recent years compared to earlier work [24] . The

ariants of Q-learning, for example Q-learning with approximation, and

olicy-based algorithms now also supply various strategies for dealing

ith continuous state. The class of actor-critic algorithms seem to be an

lternative approach; more applications need to be developed. 
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Fig. 5. Algorithms used in the literatures. 
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.5. Keywords 

The growth of authors’ keywords in recent years depicts how the

opic in this study has evolved. In Fig. 6 , we present keyword growth by

sing the loess smoothed occurrence. Loess is a nonparametric regres-

ion strategy for fitting smooth curves to empirical data [76] . The phase

deep reinforcement learning ” is a subclass of RL algorithms. “Deep ” in

his case refers to the number of layers in a neural network. A shallow

etwork has one so-called hidden layer and a deep network has more

han one. Training deep neural networks usually requires a large amount

f data and extensive computing resources. Thus, a deep RL agent will

utperform over the long run [77] . For the control target, “energy ” and

thermal comfort ” are the most relevant words and are also likely to be

mportant topics for future study. 

. Discussions 

Before training an RL agent, one of two strategies must be selected:

n-policy or off-policy. For on-policy training, the agent learning and

nteracting with the environment is the same. For value-based methods,

t estimates the value of the policy being followed. SARSA is on-policy

hen the agent starts from a state, makes an action, receives a reward,

nd is transited to next state. Based on the new state, the agent takes an
145 
ction. The process will be conservative and sensitive to errors, but will

e efficient when the exploration penalty is small. On the other hand,

gents trained by off-policy are different from those interacting with the

nvironment. Off-policy methods can find the optimal policy even if the

gent behaves randomly. Thus, ignoring the interacting agent’s policy

ay lead to a suboptimal policy when most of the rewards are negative.

or policy-based methods, there is also a need to consider the gains

f applying off-policy learning, because the problems can emerge with

arge or continuous state-action space and exploration is not feasible.

he agent interacting with the environment is usually making policies

nder the parameter setting 𝜃′ that differs from 𝜃 for the agent to be

rained. Approximations can be made by importance sampling [78] in

rder to get the gradient. Thus, when an agent is exploring in error-

nsensitive systems, SARSA may be the preferred option. Agents that do

ot explore should use Q-learning. 

Another issue that needs to be considered is the actual implementa-

ion of collecting occupant behavior. On-policy for policy-based meth-

ds can only update its gradient when actual actions are made and J ( 𝜃)

re observed. Actual deployment of devices in buildings should be able

o provide frequent reward and state signals to the agent. Moreover,

he repetition of the signals’ provision allows the agent to update pol-

cy parameter 𝜃. This is still a challenge, not only for devices but also

or the occupant to remember to repeatedly react in the same environ-

ent so that more sampled trajectories can be collected. Thus, shifting
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Fig. 6. Keywords growth. 
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o off-policy methods makes learning more efficient for complex control

asks. 

. Conclusions 

This study has briefly reviewed the reinforcement learning meth-

ds for building control that incorporate occupant behavior. Since RL

ethods assume that the agent interacts with a stochastic environment

nd works in a data-driven fashion, they are of great importance when

orming intelligent building systems where occupant behavior has a sig-

ificant influence on building performance. 

Historical publications on this topic were searched for in Scopus to

nderstand the publication sources, types, years, citations and country

ollaborations of the existing published literature. It can be seen that,

ecause of the success of deep reinforcement learning in game play-

ng, the number of publications in this field has been growing. The

opic covers multiple disciplines including energy, building, computer

cience, optimal control, sustainability and engineering. Integration of

iverse domain knowledge may accelerate the construction of more in-

elligent systems. However, the current number of citations is not high

nd international collaborations are still only between a small number
146 
f countries. Thus, joint efforts should be made in order to strengthen

he research around the topic. 

In this study, we first analyzed those studies that examined occupant

ehavior within the MDP framework. Most of the studies we examined

onsidered occupant behavior as a state for controlling HVAC systems.

t is likely that this will remain the focus of new and upcoming work.

he rest of the literature can be grouped into three categories regard-

ng the ways of interaction: occupancy, actual behavior and providing

eedback where occupant behavior poses an indirect effect on MDP. The

eward is the MDP element that is most sensitive to occupant behavior,

hich makes it essential to design the reward in an efficient way [79] ,

ecause for occupants with different profiles, their preferences for com-

ort factors will vary [ 80 , 81 ]. 

Over the course of this review we have noticed that the classical

abular Q-learning algorithm has become insufficient for building con-

rol with stochastic and complex occupant behavior. Adopting a Q-

able to store action values may yield an unreliable policy. As more

pproximation algorithms have been applied to actual studies, future

esearch should be able to implement, test and verify these in dif-

erent scenarios. We also compared simplification method and high-

ighted the function approximation with deep neural network due to the

urse of dimensionality. Finally, we discussed some of the issues to be
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aken into consideration when using off-policy strategy. The implemen-

ation of off-policy control requires frequent signal collection from the

ccupant. 
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