
Research Article
An Adaptive Fuzzy Chicken Swarm Optimization Algorithm

Zhenwu Wang ,1 Chao Qin ,1 Benting Wan ,2 William Wei Song ,2,3

and Guoqiang Yang 1

1Department of Computer Science and Technology, China University of Mining and Technology, Beijing 100083, China
2School of Software and IoT Engineering, Jiangxi University of Finance & Economics, Nanchang 330013, China
3Department of Information Systems, Dalarna University, Falun S-791 88, Sweden

Correspondence should be addressed to Zhenwu Wang; wangzhenwu@126.com and William Wei Song; wso@du.se

Received 22 September 2020; Revised 24 January 2021; Accepted 6 February 2021; Published 1 March 2021

Academic Editor: Carlos-Renato Vázquez

Copyright © 2021 ZhenwuWang et al.-is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

-e chicken swarm optimization (CSO) algorithm is a new swarm intelligence optimization (SIO) algorithm and has been widely
used in many engineering domains. However, there are two apparent problems with the CSO algorithm, i.e., slow convergence
speed and difficult to achieve global optimal solutions. Aiming at attacking these two problems of CSO, in this paper, we propose
an adaptive fuzzy chicken swarm optimization (FCSO) algorithm. -e proposed FCSO uses the fuzzy system to adaptively adjust
the number of chickens and random factors of the CSO algorithm and achieves an optimal balance of exploitation and exploration
capabilities of the algorithm. We integrate the cosine function into the FCSO to compute the position update of roosters and
improve the convergence speed. We compare the FCSO with eight commonly used, state-of-the-art SIO algorithms in terms of
performance in both low- and high-dimensional spaces. We also verify the FCSO algorithm with the nonparametric statistical
Friedman test.-e results of the experiments on the 30 black-box optimization benchmarking (BBOB) functions demonstrate that
our FCSO outperforms the other SIO algorithms in both convergence speed and optimization accuracy. In order to further test the
applicability of the FCSO algorithm, we apply it to four typical engineering problems with constraints on the optimization
processes. -e results show that the FCSO achieves better optimization accuracy over the standard CSO algorithm.

1. Introduction

-ere are many optimization problems in scientific and
engineering domains [1–4], and traditional optimization
methods (TOMs) [5], such as gradient descent method and
Newton’s method, cannot solve these optimization problems
very well because of the following three reasons. (1) Most of
the TOMs require that the objective function be convex and
continuously differentiable. -ese strict requirements de-
termine that the TOMs cannot be applied widely. (2) Due to
their low calculation efficiency, it is difficult for the TOMs to
deal with the NP-hard problem. (3) It is also difficult for the
TOMs to avoid falling into the trap of local optimal solu-
tions. Compared to the TOMs, the swarm intelligence op-
timization (SIO) algorithms (SIOAs) can handle the NP-
hard problem beautifully owing to these obvious advantages:
(1) flexibility: the whole population can adapt to the
changing environment quickly. (2) Robustness: even if a few

individuals cannot work, the whole population can still work
normally. (3) Self-organization: the whole population re-
quires relatively little supervision or top-down control. (4)
High efficiency: the SIOAs pay more attention to the im-
provement of the optimized efficiency, which can acquire the
satisfied optimal or suboptimal solutions in an acceptable
time.

In last decades, many classic SIOAs have been pro-
posed, such as genetic algorithm (GA) [6], particle swarm
optimization (PSO) algorithm [7], and artificial fish school
(AFS) algorithm [8]. Among others, the chicken swarm
optimization (CSO) algorithm [9] is a new SIO method
proposed in 2014, which simulates the social relationship
structure and foraging behaviour in a chicken swarm.
Many variants of the CSO algorithm have been proposed
recently aiming for bettering. Wu et al. [10] proved the
convergence of CSO using Markov chain and gave an
improved version of the CSO algorithm, which modifies
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the update formula of chicks to learn from both their
mother hens and rooster in their group. Qu et al. [11] used
adaptive distribution to replace the Gaussian distribution
in the update formula of rooster in order to balance the
global and local searching abilities. Li et al. [12] introduced
several improved factors learned from both the grey wolf
optimizer (GWO) and the particle swarm optimization
(PSO) to extend the searching capability. Li et al.’s method
also integrates a duplicate remove operator to enhance the
diversity of the chicken population. Torabi and Safi-Esfa-
hani [13] combined CSO with an improved raven roosting
optimization (RRO) algorithm in order to balance the
global and local searching capabilities. Fu et al. [14]
modified the update equation of roosters and introduced a
mutation operator to solve the problem of easily falling into
a trap of local optimal solutions. Furthermore, the CSO
algorithm has also been extended to solve the constraint
optimization problem [15] (see Section 6.1), 0-1 knapsack
problem [16], and multiobjective optimization problem
[17].

Although the research work of CSO has made some
progress, however, for CSO, like the other SIOAs, these
two obvious drawbacks still exist: easily falling into local
optimum and slow convergence speed [11]. One impor-
tant reason causing the aforementioned drawbacks is that
the CSO algorithm cannot adaptively adjust the param-
eters according to the current optimization results.
Generally speaking, it is almost impossible to precisely
adjust parameters of the SIOAs following different pop-
ulation situations, but we can observe or detect a rough
trend of how the parameters should be adjusted in dif-
ferent situations. For example, the more the times of it-
eration are, the smaller the parameters should become,
and vice versa. Hence, it would be interesting if we can use
relative fuzzy concepts such as “faster” iterations or
“smaller” parameters to describe the parameter adjust-
ment process of the CSO algorithm. It is known to us that
the fuzzy system [18] is a powerful tool to imitate the
thinking of the human brain to recognize and judge the
fuzzy phenomena. In consequence, we propose a fuzzy
chicken swarm optimization (FCSO) algorithm to in-
corporate the fuzzy system mechanism into the algorithm
which is able to adaptively adjust the parameters of CSO
and thus to overcome the problems of local optimum and
slow convergence. Our contributions discussed in this
paper are briefly summarized as follows:

(1) To our knowledge, the fuzzy system has been in-
troduced to and applied in the CSO algorithm for the
first time, which dynamically adjusts the number of
chickens and random factors of CSO according to
optimization speed, chicken aggregation, and iter-
ation times, in order to adaptively balance the ex-
ploitation and exploration abilities

(2) We improve the position update strategy of roosters
to overcome the randomness of the original, tradi-
tional strategy and make the local exploration more
accurate with the increasing number of iteration
times

(3) -rough modifying the design of the defuzzifier, we
enhance the defuzzification method of the fuzzy
system incorporated in the FCSO algorithm to make
the algorithm more flexible

(4) By evaluation of the key evaluation criteria, con-
vergence speed, and optimization accuracy, the
proposed algorithm outperforms the eight other
state-of-the-art, prominent SIOAs in the high- and
low-dimensional spaces, which provides a compre-
hensive and in-depth analysis of these prominent
algorithms

-e rest of this paper is organized as follows. -e basic
CSO algorithm is described in Section 2. In Section 3, we
discuss the principle of the proposed FCSO algorithm, and
the experiment process, the test data used, and evaluation
criteria are discussed in Section 4. We also present com-
prehensive experimental results and their analysis. In Sec-
tion 5, Friedman and Nemenyi tests are performed to
validate the significance of the proposed method against
other counterparts. Four classical engineering design
problems are discussed in Section 6, which shows the op-
timization ability of the FCSO algorithm in practical engi-
neering problems. We conclude the paper in Section 7,
indicating our contributions to this research area and our
future work in this direction.

2. Basic CSO Algorithm

In the basic CSO algorithm, there are three kinds of roles,
roosters, hens, and chicks, each having different behaviour
specifications. In the following, we give basic assumptions
for the CSO algorithm:

(1) -e CSO algorithm divides a chicken swarm into a
few groups, each of which has one rooster, several
hens, and a small number of chicks.

(2) -e identities of roosters, hens, and chicks are de-
termined by their fitness values, the best ones are
selected as roosters, the worst ones are the chicks,
and other individuals are the hens. Each hen ran-
domly chooses one rooster as her mate and becomes
amember of his group, and each chick also randomly
selects one hen as its mother.

(3) In the whole population, the individual identities, the
spouse relationships, and the mother-children re-
lationships remain unchanged for G generations (G
is the iterative cycle), and the identities, the spouse
relationships, and the mother-children relationships
will be updated after G generations.

(4) In each group of the whole population, hens follow
their spouse rooster to find foods, and they will
randomly compete for foods with other individuals
within a group. -e individuals with better fitness
values are more likely to obtain foods.

Each chicken is described by its position. Let RN, HN,
CN, and MN represent the number of roosters, hens, chicks,
and mother hens, respectively, and xt

i,j is the position of the
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ith chicken in the jth dimensional space on the tth iteration,
where i ∈ 1, . . . , N{ }, j ∈ 1, . . . , D{ }, and t ∈ 1, . . . , T{ } and
N, D, andT represent the total number of chickens, the
dimension number, and the maximum iteration times, re-
spectively. A rooster, a hen, and a chick have their specific
position update formulas.

For a rooster, its recurrent position is defined as follows:

x
t+1
i,j � x

t
i,j ∗ 1 + Randn 0, σ2  ,

(1)

σ2 �

1, if fi ≤fk,

exp
fk − fi

fi


 + ε

 , otherwise k ∈ [1,RN], k≠ i.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

Here, Randn(0, σ2) is a random number following
Gaussian distribution with an expectation of zero and
variance of σ2, ε is a very small constant, k is the number of
another rooster which is chosen randomly, and fi andfk are
the fitness values of the ith and the kth roosters, respectively.

-e recurrent position of a hen is defined as follows:

x
t+1
i,j � x

t
i,j + C1 ∗Rand∗ x

t
r1 ,j − x

t
i,j 

+ C2 ∗Rand∗ x
t
r2 ,j − x

t
i,j ,

(3)

C1 � exp
fi − fr1

 

abs fi(  + ε( 
⎛⎝ ⎞⎠, (4)

C2 � exp fr2
− fi . (5)

Here, C1 and C2 are the learning factors, Rand is a
random number following uniform distribution in the scope
of [0, 1], r1 is the index of the rooster that is the spouse of the
ith hen, r2 is the number of a rooster or a hen which is
selected randomly, and r1 ≠ r2.

-e recurrent position of a chick is defined as follows:

x
t+1
i,j � x

t
i,j + FL∗ x

t
m,j − x

t
i,j , (6)

where xt
m,j represents the mother hen of chicks and FL is a

random factor in the scope of [0, 2]. So, the basic CSO
algorithm is shown in Algorithm 1.

3. The Principle of the FCSO Algorithm

A major principle of applying the fuzzy method is to apply
the fuzzy concepts to the adjustment of the parameters of the
CSO algorithm, which aims to intuitively reflect the human
knowledge about the manipulation of the parameters to
achieve a better convergence and accuracy of the algorithm.
In other words, first, we fuzzify the parameter values to allow
a knowledge-based judgement of how to modify the pa-
rameters. -en, we use the knowledge library of the pa-
rameter scales to determine which values to choose and
execute the adjustment of the parameters. Finally, we
defuzzify the fuzzy values for the parameters and continue

running the algorithm. -e proposed FCSO algorithm
adopts the fuzzy system to adaptively adjust parameters of
CSO under different population situations. -e parameters
include random factors Rand in formula (3), FL in formula
(6), and the number of chickens of the whole population N.
-is dynamic mechanism, applying the fuzzy method to
adaptively adjust CSO’s parameters in an iterative process,
aims to overcome the defects (discussed in Section 1) of CSO
to some extent. -e key concepts that describe the proposed
method and algorithm are presented in this section. After
providing an overview of the framework, including the fuzzy
system, of the algorithm in Section 3.1, we define and discuss
in detail the key input variables for the fuzzy system in
Section 3.2. In Sections 3.3 and 3.4, we describe two key
mechanisms of the fuzzy system: one is the fuzzifiers and
defuzzyfiers, and the other is the rule base and inference
engine. Finally, we present the proposed FCSO algorithm in
Section 3.5.

3.1. Overall Description of the FCSO Algorithm. -e FCSO
algorithm adopts the fuzzy system to adjust the number of
chickens and random factors adaptively, and the adopted
fuzzy system consists of four components [18], including a
fuzzifier, a defuzzifier, a fuzzy rule base, and a fuzzy in-
ference engine.-e input variables (discussed in Section 3.2)
to the fuzzy system are optimization speed, iteration times,
and chicken aggregation, which are fuzzified with the
Gaussian fuzzifier. -e fuzzy rule base is composed of fuzzy
IF-THEN rules, and the fuzzy inference engine (FIE)
completes reasoning from input variables to output variables
according to the fuzzy IF-THEN rules. -e input variables
should be fuzzified by the fuzzifier before reasoning, and the
output variables need to be defuzzified by the defuzzifier
after reasoning. -e input variables (discussed further in
Section 3.2) are extracted to monitor the running status of
the proposed algorithm, including optimization speed, the
aggregation of chickens, and iteration times. -e output
variables (discussed in Section 3.3) are the random factors
Rand and FL and the number of chickens N. -ese output
variables are transmitted to CSO algorithm to control its
running, and the updated monitoring indicators (or input
variables) are input into the fuzzy system iteratively to
adaptively adjust the CSO parameters in order to overcome
the shortcomings of CSO algorithm; the framework of FCSO
is described in Figure 1. -e ◊ symbol in Figure 1 indicates
that the input variables nv and nt can derive the output
variable Rand and FL through the fuzzy system, and the ○
symbol indicates that nv and aggr can adjust the output
variable N; the details are described in Section 3.4.

3.2. Input Variables of the Fuzzy System. According to the
principle of the CSO algorithm, random factors Rand and FL
and the number of chickens N are important factors which
can influence CSO’s global searching ability and conver-
gence speed. In order to adjust these parameters, some
monitoring indicators of CSO algorithm need be extracted
as the input variables of the fuzzy system. Generally
speaking, if the fitness values (suppose minimum
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optimization problem) of all the chickens are optimized too
fast, it indicates that the whole population may fall into local
optimum, so optimization speed is defined as one indicator,
described in the following equations:

v
G

�
1
G



G

l�1

1
N



N

j�1

f
l−1
j − f

l
j

f
l−1
j



 + ε
, (7)

nv �
1

1 + e
− vG+10( )

, (8)

where G is the iterative cycle (see basic assumption (3) of
CSO in Section 2), N is the total number of chickens, vG

represents the average value of optimization speed in one
iterative period G, fl−1

j and fl
j are the fitness values of the

jth chicken in the (l − 1)th and lth iterations among G,
respectively, and nv is the normalization of vG by sigmoid
function. -e purpose of adding a constant 10 to the
sigmoid function [19] is to make nv evenly distributed in
[0, 1]. So, too large optimization speed may make CSO fall
into the local optimal solution, and too small speed means
that CSO converges slowly. Another monitoring indicator
is the aggregation of chickens, which is defined in
equation (11):

μ �
1
N



N

i�1
xi, (9)

aggr �
1
N



N

i�1

������������������������

xi,1 − μ1 
2

+ . . . xi,D − μD 
2



, (10)

naggr �

aggr
AGGR

, aggr<AGGR,

1, aggr≥AGGR,

⎧⎪⎪⎨

⎪⎪⎩
(11)

where xi � (xi,1, xi,2, . . . , xi,D) is the ith chicken’s position,
μ � (μ1, μ2, . . . , μD) is the centroid of positions of N
chickens, aggr represents the average distance between xi
and μ, and AGGR is the initial average distance between xi
and μ in the initialization step. Generally speaking, the initial
positions should cover the whole solution space as much as

possible, so AGGR should be larger than aggr, and naggr is
the normalization of aggr, as described in equation (11). If
aggr is too small, it indicates that the chicken swarm is too
concentrated, which would weaken the global searching
ability of the CSO algorithm. On the contrary, if aggr is too
large, it means that the chicken population is too scattered,
which would lead to slow convergence speed. -e third
indicator is the recurrent iteration times t. If t is large, it
means chickens’ positions need to be updated exquisitely at
the late stage of the CSO algorithm. -e normalization of t,
nt, is defined as

nt �
t

T
. (12)

3.3. Fuzzifiers and Defuzzifiers of the Fuzzy System. In this
paper, all the three input variables are fuzzified by the
Gaussian fuzzifier into three fuzzy sets, respectively, in-
cluding high, medium, and low. For optimization speeds, the
membership functions of low, medium, and high are defined
as follows:

μl(nv) �

1
���
2π

√
∗ σ

exp −
(nv)

2

2σ2
 , nv≤p1,

0, p1< nv≤ 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

μm(nv) �

1
���
2π

√
∗ σ

exp −
(nv − 0.5)

2

2σ2
 , p1< nv≤p2,

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

μh(nv) �

1
���
2π

√
∗ σ

exp −
(nv − 1)

2

2σ2
 , nv>p2,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

Here, σ2 is the variance, and in this work, σ � 0.04. -e
parameters p1 and p2 are two intersecting points of the three
Gaussian curves with μ being 0, 0.5, and 1, respectively, as

Input: parameters N,T, RN, HN, CN, MN, G

Output: the best optimized solution
Steps:
(1) Initialize positions for chickens randomly.
(2) Compute the fitness value for each chicken, select the global best position of the population and the local best position of every

chicken, and initialize iteration times t � 1.
(3) If t%G equals zero (% is the remainder operator), sorting all the chickens in the descending order of fitness values, the best RN

individuals are chosen as roosters, the worst CN individuals are chicks, and others are hens. Divide the population into several
groups, each of which includes one rooster, several hens, and chicks that randomly select their spouse and mothers, respectively.

(4) Update the positions for roosters, hens, and chicks according to formulas (1), (3), and (6), respectively, and compute their fitness
values.

(5) Update the global best position of the population and the local best position of each individual.
(6) Iteration times t � t + 1; if t equals M or the solution satisfies accuracy requirement, CSO outputs the final result; else, go to Step 3.

ALGORITHM 1: -e basic CSO algorithm.
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described in Figure 2. -e two parameters also apply to
equations (16) to (21).

Similarly, the membership functions of low, medium,
and high for the aggregation of chickens are defined as
follows:

μl(naggr) �

1
���
2π

√
∗ σ

exp −
(naggr)2

2σ2
 , naggr≤p1,

0, p1<naggr≤ 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)

μm(naggr) �

1
���
2π

√
∗ σ

exp −
(naggr − 0.5)

2

2σ2
 , p1< naggr≤p2,

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

μh(naggr) �

1
���
2π

√
∗ σ

exp −
(naggr − 1)

2

2σ2
 , naggr>p2,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(18)

Following are the membership functions of iteration
times nt:

μl(nt) �

1
���
2π

√
∗ σ

exp −
(nt)

2

2σ2
 , nt≤p1,

0, p1< nt≤ 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(19)

μm(nt) �

1
���
2π

√
∗ σ

exp −
(nt − 0.5)

2

2σ2
 , p1< nt≤p2,

0, otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(20)

μh(nt) �

1
���
2π

√
∗ σ

exp −
(nt − 1)

2

2σ2
 , nt>p2,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

For the output variables of the fuzzy system, in order to
expand the position updating span, the random factors Rand
and FL have the same value range [0, 3] in the FCSO al-
gorithm, and the number of chickens N can select 0.7∼2
times the initial number of chickens. For the aforementioned
three output variables, too few fuzzy sets affect the accuracy
of optimization, but too many sets would lead to complex
rule mapping that would affect algorithm efficiency. We
quantified them into 3, 5, and 9 fuzzy sets, respectively, and
the experimented results showed that the effect of taking five
fuzzy sets was a suitable solution, which include very low,
low, medium, high, and very high. Rand is fuzzified into five
fuzzy sets according to the following Gaussian membership
functions, FL adopts the similar membership functions as
Rand, and no more explanation in this article.

Random factors
 Rand and FL

Optimization
speed nv

Iteration times nt

Fuzzy inference 
engine 

The number of 
chickens NChicken 

aggregation aggr

Fuzzy rule base 

The CSO algorithm 

Fuzzifier Defuzzifier

Fuzzy system
Input variables Output variables 

Figure 1: -e framework of the FCSO algorithm.
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Figure 2: -e membership functions of optimization speed nv.
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μvl(rand) �

1
���
2π

√
∗ σ

exp −
rand2

2σ2
  rand≤p1,

0 otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(22)

μl(rand) �

1
���
2π

√
∗ σ

exp −
(rand − 0.25)

2

2σ2
  p1< rand≤p2,

0 otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(23)

μm(rand) �

1
���
2π

√
∗ σ

exp −
(rand − 0.5)

2

2σ2
  p2< rand≤p3,

0 otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

μh(rand) �

1
���
2π

√
∗ σ

exp −
(rand − 0.75)

2

2σ2
  p3< rand≤p4,

0 otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

μvh(rand) �

1
���
2π

√
∗ σ

exp −
(rand − 1)

2

2σ2
  rand≥p4,

0 otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(26)

Here, σ2is the variance of rand with the value σ � 0.04,
and p1, p2, p3, and p4 are the intersections among five
Gaussian curves when μ is 0, 0.25, 0.5, 0.75, and 1, re-
spectively, as described in Figure 3.

In this work, we fuzzified the times of the initial number
of chickens into five fuzzy sets according to the following
membership functions. -e current number of chickens can
be calculated through multiplying defuzzified n by the initial
number of chickens.

μvl(n) �

1
���
2π

√
∗ σ

exp −
n
2

2σ2
  n≤p1,

0 otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(27)

μl(n) �

1
���
2π

√
∗ σ

exp −
(n − 0.25)

2

2σ2
  p1< n≤p2,

0 otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(28)

μm(n) �

1
���
2π

√
∗ σ

exp −
(n − 0.5)

2

2σ2
  p2< n≤p3,

0 otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(29)

μh(n) �

1
���
2π

√
∗ σ

exp −
(n − 0.75)

2

2σ2
  p3< n≤p4,

0 otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

μvh(n) �

1
���
2π

√
∗ σ

exp −
(n − 1)

2

2σ2
  n≥p4,

0 otherwise,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(31)

where σ2is the variance of the chicken number and the
parameters σ, μ, p1, p2, p3, and p4 have the same settings as
Rand, as described in Figure 4.

For the defuzzification of output variables Rand, FL, and
N, this work adopts the center average defuzzifier (CADefz)
[18], which is formally defined as follows:

CADefz(c, h) �


M
l�1 cl ∗ hl


M
l�1 hl

, (32)

where M represents the number of fuzzy sets,
cl ∈ c � c1, c2, . . . , cM , and hl ∈ h � h1, h2, . . . , hM , the
center and the height of the lth fuzzy set, respectively. We use
the following equation (33) to identify the center of the fuzzy
set in the standard CADefz:

c � ∪
M

i�1
ci � random iα(  ,

iα � ov|μi(ov)≥ α, ov ∈ FIEoutα ,

FIEoutα � v|μFIEout(v)≥ α .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(33)

Here, μFIEout(v) is the membership function derived
from the output of the fuzzy inference engine (FIE). -e
value of ci is randomly selected from the set iα, and we use
the following equation (34) to identify h:
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Figure 3: Membership function of random factor Rand.
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h � 

M

i�1
hi � max μi ovi( ( , ovi ∈ iα . (34)

Here, hi is defined as the maximum value of μi(ovi)

where ovi is within the scope of iα. In this work, the threshold
value α in equation (33) equals 0.5 for Rand and FL, and for
the number of chickens N, it is set to 0.7, approximate to the
membership values of p1p2, p3, and p4.

3.4. Fuzzy Rule Base and Fuzzy Inference Engine. -ere are
two functions that the fuzzy system performs: the first (as
discussed in Section 3.4.1) to use the optimization speed nv
and iteration times nt to deduce random factors Rand and
FL and the second (as discussed in Section 3.4.2) to use naggr
and nt to derive the number of chickens N.

3.4.1. Fuzzy System for Adjusting Random Factors. -e
random factors Rand and FL in the basic CSO algorithm are
completely random. On the one hand, at the early stage of
running the CSO algorithm, too small random factors in-
dicate that each moving step of the position update (see
equations (3) and (6)) is very tiny, which makes it easy for
the algorithm to fall into the local optimum and damage the
capability of the algorithm on global exploration. On the
other hand, at the later stage, improper random factors (for
example, large random factors) will lead to too large moving
steps, which will hinder the local refinement and affect the
convergence speed. -us, we attempt to balance the global
and local searching abilities through adaptively adjusting
random factors, which change according to judging opti-
mization speed nv and current iteration times nt, as de-
scribed in Figure 1.

When the FCSO algorithm runs on the early stage of
iteration (small iteration times), it should have a wide
searching scope in order to find the global optimum as much
as possible. -us, according to equations (3) and (6), the

random factors should have a large range, which map to the
fuzzy sets of very high, high, and medium correspondingly.
On the contrary, when the FCSO algorithm runs on the later
stage of iteration (large iteration times), it should focus on
local refined exploration, so the scope of random factors
should concentrate on a small range, which map to the fuzzy
sets of very low, low, and medium. Similarly, according to
equation (7), low optimization speed means the slow con-
vergence, which generally indicates that the FCSO algorithm
falls into the local optimal solution, enlarging the random
factors in equations (3) and (6) can help FCSO jump to the
local optimum, so Rand and FL map to the fuzzy sets of very
high, high, and medium. On the contrary, high optimization
speed means the rapid convergence, and narrowing random
factors can help FCSO to exquisitely explore the global
optimum, so they map to the fuzzy sets of very low, low, and
medium. When iteration times and optimization speed are
medium, respectively, random factors map to the fuzzy sets
of low, medium, and high. According to the above dis-
cussion, we derive the following mapping rules in Table 1.

-e fuzzy rule base is composed of fuzzy IF-THEN rules,
each of which is formulated as IF< FP1>THEN< FP2>,
where FP1 and FP2 are fuzzy propositions. -e rule base of
adjusting random factors contains a set of rules as in the
following equation:

R
(r)
rf : IF<FP

r
1 >THEN< FPr

2 > , r � 1, 2, . . . , 9. (35)

Here, R
(r)
rf represents the whole rule set, and Rr

rf is the rth
rule, r � 1, 2, . . . , 9. For example, for the random factor
Rand, the first rule R1

rf can be as follows: IF< nt is high and
nv is high>THEN<Rand is very low>, as in Table 1.

3.4.2. Fuzzy System for Adjusting the Number of Chickens.
-e number of chickens in the basic CSO algorithm is
changeless, while in this work, we adopt the fuzzy system to
dynamically change the number of chickens according to
optimization speed and chicken aggregation that are defined
in Section 3.2. Low optimization speed means slow conver-
gence. In order not to stuck in a local optimum, we should lift
the population diversity through increasing the chicken
number nt, so we map the chicken number to three subsets of
the fuzzy set: very high, high, and medium. On the contrary,
high optimization speed indicates rapid convergence. Re-
ducing the chicken number would alleviate this trend, so it
maps to the fuzzy sets of very low, low, and medium for the
number of chickens. For the chicken aggregation, high ag-
gregation means that individuals are too concentrated, which
is easy to lead to the local optimal solution. It is necessary to
increase the number of chickens to maintain the individual
diversity, so when chicken density is high, the number of
chickens maps to the fuzzy sets of very high, high, and
medium. On the contrary, low aggregation indicates that we
can decrease the number of chickens to enhance the local
exploration, so the number of chickens maps to the fuzzy sets
of very low, low, and medium. A medium optimization speed
or aggregation maps to the fuzzy sets of the number of
chickens, including high, medium, and low, respectively.
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Figure 4: Membership of the number of chickens N.
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According to the above discussion, the fuzzy rule base of
adjusting the number of chickens is defined as follows:

R
(r)
n : IF< FPr

1 >THEN< FPr
2 > , r � 1, 2, . . . , 9. (36)

R(r)
n represents the whole rule set, and Rr

n is the rth rule,
r � 1, 2, . . . , 9. For example, R1

n can be defined as follows:
IF< nv is high and naggr is high>THEN<N is medium>, as
described in Table 2. In the fuzzy inference engines FIErf

and FIEn, the fuzzy logic principle is used to combine the
fuzzy IF-THEN rules in R

(r)
rf or R(r)

n into a mapping from the
input variables to the output variables. In the FCSO algo-
rithm, the type of fuzzy inference engine is Mamdani [18],
one of the most commonly used inference engine, which
defines the fuzzy implication relation by calculating the
Cartesian product (taking the smallest value) of two fuzzy
sets.

3.5.@eFCSOAlgorithm. Roosters play an important role in
the CSO algorithm that will affect the optimization results of
hens and chicks. In the basic CSO algorithm, the position
update of a rooster is of great randomness, which has a
strong influence on the convergence speed of the CSO al-
gorithm. CSO is easy to fall into a local optimum in the late
iterations [15]. In this paper, we adopt the cosine function to
adjust a rooster position, and the periodic variation of the
cosine function will affect the updating step length of a
rooster’s position in the later iteration stage, which can help
CSO jump out of the local optimal solutions. -e modified
method is defined as follows:

x
t+1
i,j � |cos(t)|∗ x

t
i,j ∗ 1 + Randn 0, σ2  . (37)

-e update range of a rooster position will be narrowed
with the increase of iterations according to the trend of the
cosine function, which is conducive to the convergence of
the CSO algorithm in the later running stage. -e FCSO
algorithm is given in Algorithm 2.

4. Experimental Results and Analysis

In this section, we first introduce the experimental envi-
ronment and then make a comprehensive comparison on
optimization accuracy and convergence speed. We consider
a comprehensive comparison of the proposed FCSO with
other eight related algorithms along two directions: fun-
damental biointelligence algorithms and biointelligent

algorithms equipped with fuzzy systems. One direction is to
compare the FCSO with four fundamental biointelligence
algorithms, including the basic CSO algorithm [4], genetic
algorithm (GA) [1], particle swarm optimization (PSO)
algorithm [2], and artificial fish school (AFS) algorithm [3].
-e other direction is to compare the FCSO with four
biointelligence algorithms which are equipped with the
fuzzy logic mechanism, including the fuzzy GA (FGA) al-
gorithm [20], fuzzy artificial fish school (FAF) algorithm
[21], fuzzy particle swarm optimization (FPSO) algorithm
[22], and the improved CSO (ICSO) algorithm [10].

4.1. Description of the Experimental Environment. For the
fairness of comparison, each algorithm will run 10 times
independently, and the number of particles of each algo-
rithm is set to 50, and iteration times are set to 500 for 10-
dimensional space and 1000 for 100-dimensional space,
respectively. -e parameters of the compared algorithms are
consistent with the corresponding original work
[1–4, 10, 19–21] in order to ensure the best performance of
each algorithm; they are described in Table 3. In the ex-
periments, the algorithms are compared from two qualities:
accuracy and convergence speed. In terms of accuracy, we
compute the fitness values of minimum (MIN), maximum
(MAX), mean (MEAN), and standard deviation (STD) on 10
times independent experiments owing to the randomness of
single experiment’s result. For convergence speed, we also
count the average value of the best fitness under the cor-
responding iterative number in 10 independent experi-
ments. All the 9 compared algorithms are implemented by
Python programming language, and the software and
hardware environments are described as follows: CPU is
Intel (R) Core (TM) i7-4800MQ @2.70GHz, memory is
16.00GB, the operating system is Windows 10 64 bit, the
development platform is PyCharm, and the interpreter
version of Python is Python3.7.

4.2. Description of Benchmark Functions. In this work, 30
black-box optimization benchmarking (BBOB) functions
are adopted as fitness functions which are proposed in the
2017 IEEE Congress on Evolutionary Computation (CEC
2017) [23]. -e optimum values of the 30 BBOB functions
(F0∼F29) are from 100 to 3000 with the step of 100, and they
include unimodal functions, multimodal functions, hybrid
functions, and composition functions. -ese BBOB func-
tions are adopted to compare the accuracy and convergence

Table 1: Mappings of fuzzy rule base for adjusting random factors.

Iteration times nt Optimization speed nv Random factors Rand and FL
High High Very low
High Medium Low
Medium High Low
High Low Medium
Medium Medium Medium
Low High Medium
Medium Low High
Low Medium High
Low Low Very high
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between FCSO and the other eight SIOAs. -e compared
algorithms can be divided into two groups: the fuzzy-based
SIO algorithms, including FGA, FPSO, and FAFS, and the
standard or other method-based SIOAs, including CSO, GA,
PSO, AFS, and ICSO. Generally speaking, the higher the
dimension, the harder to find global optimum and the
slower the convergent speed. In literature [11], 30 dimen-
sions are considered to be high dimensional. However, in
order to evaluate the convergence speed and optimization
accuracy, in FCSO, we take 100 and 10 as the high and low
dimensions for the 30 BBOB functions, respectively.

4.3. Analysis of Experimental Results. As briefed in the be-
ginning of this section, we compare the proposed FCSOwith
other eight SIOAs (with two directions) on the 30 BBOB
functions for the low- and high-dimensional spaces, re-
spectively, and get the comparison results of accuracy and
convergence speed. Supplementary Materials A and B give
the detailed experimental results of 9 algorithms’ accuracy
and convergence speed. Specifically, Tables A1 and A2 in
Supplementary Material A give the accuracy comparison on
10- and 100-dimensional spaces, respectively; the bold font
represents the optimal values of 9 algorithms. In

Table 2: Mappings of fuzzy rule base for adjusting the number of chickens.

Optimization speed nv Chicken aggregation naggr Number of chickens N
High Low Very low
Medium Low Low
High Medium Low
High High Medium
Low Low Medium
Medium Medium Medium
Medium High High
Low Medium High
Low High Very high

Input: parameters N,T, RN, HN, CN, MN, G, and α
Output: the best optimized solution
Steps:
(1) Initialize positions for chickens randomly.
(2) Compute the fitness value for each chicken, select the global best position of the population and the local best position of every

chicken, and initialize iteration times t � 1.
(3) If t%G equals zero (% is the remainder operator), run the fuzzy systems to adjust random factors Rand, FL, and the number of

chickens N.

(1) Compute nv, nt, and naggr according to equations (8), (11), and (12)
(2) Operate fuzzification on nv, nt, naggr, Rand, FL, and N according to equations (13)∼(31)
(3) Operate fuzzy inference according to fuzzy rule bases R

(r)
rf in equation (35) and R(r)

n in equation (36)
(4) Operate defuzzification on Rand, FL, and N according to equation (32); the results are regarded as the new parameter in the

next generation;

Sorting all the chickens in the descending order of fitness values, the best RN individuals are chosen as roosters, the worst CN
individuals are chicks, and others are hens. Divide the population into several groups, each of which includes one rooster, several
hens, and chicks that randomly select their spouse and mothers, respectively.

(4) Update the positions for roosters, hens, and chicks according to formulas (1), (3), and (6) respectively, and compute their fitness
values.

(5) Update the global best position of the population and the local best position of each individual.
(6) -e iteration times t � t + 1; if t equalsT or the solution satisfies accuracy requirement, CSO outputs the final result; else, go to Step 3.

ALGORITHM 2: -e steps of the FCSO algorithm.

Table 3: Parameters of compared algorithms.

Algorithms Parameters
CSO RN � N∗ 0.2,HN � N∗ 0.6,CN � N − RN − HN,MN � HN∗ 0.1,G � 10, FL ∈ (0.4, 1)

FCSO RN � N∗ 0.1,HN � N∗ 0.4,CN � N − RN − HN,MN � HN∗ 0.6,G � 3, α � 0.5 for Rand and FL, α � 0.7 forN

FGA Pc � 0.8, Pm � 0.1,Pop � 100,Maxgen � 3000
FPSO C1 � 2, C2 � 2
FAFS Visual � 2.5, try number � 20, step � 0.3
AFS Visual � 2.5, trynumber � 20, step � 0.3, λ � 0.618
GA θ1 � 1, θ2 � 0.8, θ3 � 0.2
PSO C1 � 2, C2 � 2
ICSO RN � N∗ 0.2,HN � N∗ 0.6,CN � N − RN − HN,MN � HN∗ 0.1,G � 10, FL ∈ (0.4, 1), C � 0.4
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Supplementary Material B, Figures S1∼F30 and F31∼F60
show the comparison results of convergence speed on low-
and high-dimensional spaces, respectively.

4.3.1. Results’ Comparison on Accuracy and Stability. -e
results in Tables A1 and A2 of Supplementary Material A are
concluded in Table 4; the bold numbers represent the
winners of SIOAs according to the specific criterion, and the
corresponding winning functions are shown in the following
brackets. As described in Table 4, for the 10-dimensional
space, FCSO achieves remarkably better results than the
other eight SIOAs. Specifically, FCSO obtained 15, 17, 14,
and 9 best results on the MAX, MIN, MEAN, and STD
criteria, respectively.-e second best algorithm is FAFS, and
the corresponding results are 7, 6, 8, and 4, respectively;
those values of FGA are 5, 4, 4, and 1, respectively, and the
other six algorithms have no advantages in the 10-dimen-
sional space. In the 100-dimensional space, FCSO performs
better than other eight algorithms. It has obtained 12, 11, 12,
and 10 best results on the MAX, MIN, MEAN, and STD
criteria, respectively. -e corresponding results of FGA are
7, 4, 6, and 5, respectively, and the best results of FAFS are 4,
8, and 5 on theMAX,MIN, andMEAN criteria, respectively;
other six algorithms still have no advantages on the 100-
dimensional space. In addition, it seems that fuzzy-based
SIOAs obtained better results than other compared SIOAs,
which indicated that the mechanism of fuzzy control can
adaptively adjust parameters for complex optimization
functions.

In detail, in the 10-dimensional space, FCSO simulta-
neously obtained the best results on 12 functions (F1, F4, F6,
F7, F13, F14, F18, F20, F22, F23, F24, and F26) on the MAX,
MIN, and MEAN criteria. For the second best algorithm
FAFS, it only obtained the corresponding best results on 4
functions (F0, F12, F17, and F29), and those of FGA are 3
functions (F3, F8, and F19). -e above results indicate that
FCSO has the best accuracy compared with other eight
algorithms in the low-dimensional space. In addition, in the
10-dimensional space, FCSO and CSO have obvious ad-
vantages on the stability than other seven algorithms because
they obtained 9 and 6 best results on the STD criterion,
respectively. In the 100-dimensional space, FCSO simulta-
neously obtained the best results on 11 functions (F2, F5, F6,
F7, F8, F13, F15, F19, F20, F24, and F27) on the MAX, MIN,
and MEAN criteria, the second best algorithm is FAFS, and
it only obtained best results on 3 functions (F0, F9, and F21)
on the MAX, MIN, and MEAN criteria simultaneously.
FCSO also obtained the best results of 10 functions on the
STD criterion; it has obvious advantage than other eight
algorithms, which indicates that, in the 100-dimensional
space, FCSO has the best stability than other eight algo-
rithms. Based on the above analysis of experimental results,
we can conclude that FCSO has obvious advantages on
accuracy compared with other eight state-of-the-art SIOAs.

4.3.2. Efficiency Comparison and Analysis. In terms of op-
timization efficiency, the convergence curves of nine SIOAs
in the 10- and 100-dimensional spaces are described in

Figures S1∼S30 and S31∼S60 of Supplementary Material B,
respectively. In the 10-dimensional space, FCSO acquired
the fast optimization efficiency except functions F23 and
F27, which has obvious advantages than other eight SIOAs.
GA, AFS, and CSO have slow convergence speed on most
functions. In the 100-dimensional space, FCSO achieved the
fast optimization efficiency on all the functions, while GA,
FGA, AFS, and FAFS have the slow speed on almost all the
functions. In addition, the convergence speed of CSO in the
high-dimensional space is more faster than that in the low-
dimensional space, which indicates that CSO-based algo-
rithms are suitable to solve high-dimensional problems.
Although FGA and FAFS perform well in the 10-dimen-
sional space, they have slow convergence speed in the 100-
dimensional space. -e proposed FCSO algorithm has the
fast optimization efficiency in both 10- and 100-dimensional
spaces on almost all the functions.

4.3.3. Empirical Analysis of Experimental Results.
According to the analysis in Sections 4.3.1 and 4.3.2, we can
conclude that the FCSO algorithm has obvious advantages in
the criteria of accuracy, stability, and optimization efficiency
compared with other eight SIOAs. For the accuracy, the
basic CSO algorithm is no better than other SIOAs, while the
proposed FCSO performs very well because the fuzzy system
(see Section 3) has been incorporated into the CSO algo-
rithm to dynamically tune the parameters in order to
adaptively balance the exploitation and exploration abilities.
Compared with the parameters of PSO, AFS, CSO, GA, and
ICSO, adopting the fixed empirical constants, the accuracy
of FCSO, FGA, and FAFS has obvious advantages owing to
that the fuzzy system can dynamically adjust the parameters
according to optimization problems. FCSO adopts the
grouping and regrouping mechanisms, where roosters, hens,
and chicks have different evaluation strategies, and the
identities of individuals will be changed periodically, so it is
easier to obtain better solutions than FGA and FAFS that
have the relatively single and static evolutionary strategies.
For the stability, FCSO obtained the best results on the STD
criterion in both 10- and 100-dimensional spaces; part of the
reason lies in intrinsic learning mechanisms of CSO (CSO
obtained the best stability except FCSO), including the di-
verse learning strategies of chicken swarm and the grouping
and regrouping mechanism. Another important reason is
the mechanism of adaptive parameter tuning in FCSO that
can avoid the influence of random position initialization.
For the optimization efficiency, as described in Section 3.5,
the cosine function has been adopted to adjust rooster
positions that play an important influence on the evolu-
tionary process of CSO. -e update step length of a rooster
position will be narrowed with the increase of iterations
according to the trend of the cosine function, which is
conducive to the convergence of the CSO algorithm in the
later running stage.

4.3.4. Time Complexity Analysis for Compared Algorithms.
As described in Section 2,N, D, andT represent the number of
chickens, the dimension number, and the maximum iteration
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times, respectively. Suppose TFZ represents the time complexity
of the fuzzy system for all the compared fuzzy-based algo-
rithms, the time complexity of each compared algorithm is
concluded in Table 5. From Table 5, we can see that the time
complexities of AFS and FAFS are O (D∙N∙T∙Trynumber), the
time complexities of other compared algorithms are O
(D∙N∙T), so FCSO is a competitive algorithm.

5. Statistical Tests for Algorithm Comparison

In this work, we consider two statistical tests, Friedman test [24]
andNemenyi test [24]. A Friedman test is constructed to analyse
the performance of the compared SIOAs. Table 6 provides the
Friedman statistics FF and the corresponding critical value in
terms of each evaluation criterion. As shown in Table 6, the null
hypothesis (that all of the compared algorithms will perform
equivalently) was clearly rejected for each evaluation criterion at
a significance level of α � 0.05 for the experimental results in
both 10- and 100-dimensional spaces. Consequently, we proceed
to conduct a post hoc test [24] in order to analyse the relative
performance among the compared SIOAs.

-e Nemenyi test [24] is used to test whether each of the
SIOAs performed competitively against the other compared
SIOAs in both 10- and 100-dimensional spaces, including
the proposed FCSO. In the test, the performance between
two SIOAs was considered to be significantly different if the

corresponding average ranks differed by at least the critical
difference CD � qα

�����������
k(k + 1)/6N


. For the test, qα is equal to

3.102 at the significance level α � 0.05, and thus, CD takes
the value of 2.1934 (k� 9 andN� 30). Figure 5 shows the CD
diagrams for each of the four evaluation criteria about the
experimental results of the 10-dimensional space. If any
compared SIOA whose average rank was within one CD to
that of FCSO, it would be connected to FCSO with a red line,
as described in Figure 5. -e algorithms that were uncon-
nected to FCSO were considered to have a significantly
different performance between them. In MAX (Figure 5(a)),
for example, the average rank for FCSO was 1.9333, and the
critical value would be 4.1267 by adding CD. Since PSO, GA,
FPSO, CSO, FGA, AFS, and FAFS obtained 6.6667, 6.5, 6.2,
5.6, 5.0667, 4.8, and 4.1333 for their respect average rank-
ings, they were significantly worse compared with FCSO.
From Table 5, we can see that FCSO obtained the best
average ranks on all four criteria and has obvious better
performance than the other SIOAs.

Figure 6 shows the CD diagrams for each of the four
evaluation criteria about the experimental results of the 100-
dimensional space. FCSO obtained the best average rank on
the MAX and STD criteria and ranked the second and third
best average ranks on the MEAN and MIN criteria, re-
spectively. Although FAFS obtained the best average ranks
on the MIN and MEAN criteria, its results are not stable

Table 4: -e number of wins and corresponding functions of each criterion for 9 SIOAs.

Criteria
SIOAs MAX MIN MEAN STD

FCSO

D� 10
15 (F1, F4, F5, F6, F7, F13,
F14, F15, F16, F18, F20,
F22, F23, F24, F26)

17 (F1, F2, F4, F6, F7, F10,
F13, F14, F18, F20, F21,
F22, F23, F24, F25, F26,

F27)

14 (F1, F4, F5, F6, F7, F13,
F14, F16, F18, F20, F22,

F23, F24, F26)

9 (F11, F13, F14, F15, F16,
F18, F19, F24, F26)

D� 100
12 (F2, F4, F5, F6, F7, F8,

F13, F15, F19, F20,
F24, F27)

11 (F2, F5, F6, F7, F8, F13,
F15, F19, F20, F24, F27)

12 (F2, F4, F5, F6, F7, F8,
F13, F15, F19, F20,

F24, F27)

10 (F0, F1, F2, F3, F4, F8,
F11, F15, F20, F25)

FAFS
D� 10 7 (F0, F10, F12, F17, F21,

F27, F29)
6 (F0, F9, F11, F12, F17,

F29)
8 (F0, F9, F10, F12, F17,

F21, F27, F29) 4 (F0, F17, F27, F29)

D� 100 4 (F0, F9, F18, F21) 8 (F0, F9, F14, F17, F18,
F21, F28, F29) 5 (F0, F9, F21, F23, F28)

FGA
D� 10 5 (F3, F8, F11, F19, F28) 4 (F3, F8, F15, F19) 4 (F3, F8, F19, F28) 1 (F3)

D� 100 7 (F12, F16, F22, F25, F26,
F28, F29) 4 (F1, F3, F10, F16) 6 (F3, F16, F22, F25,

F26, F29)
5 (F12, F16, F26,

F28, F29)

FPSO D� 10 1 (F25) 1 (F25) 1 (F25)
D� 100 1 (F22)

PSO D� 10 1 (F28) 1 (F15) 2 (F4, F23)
D� 100 1 (F22)

AFS D� 10 1 (F9) 1 (F11) 5 (F1, F2, F10, F12, F21)
D� 100 2 (F11, F23) 2 (F11, F12) 3 (F11, F12,F18) 1(F23)

CSO D� 10 6 (F5, F6, F7, F20,
F22, F28)

D� 100 1 (F10) 1 (F4) 1 (F10) 5 (F7, F9, F19, F21, F24)

GA D� 10 2 (F5,F16)
D� 100 3 (F1, F3, F14) 3 (F23, F25, F26) 2 (F1, F14) 2 (F14, F18)

ICSO
D� 10 1 (F2) 1 (F2) 2 (F8, F9)

D� 100 1 (F17) 1 (F17) 6 (F5, F6, F10, F13,
F17, F27)
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(only ranked the fifth on the STD criterion), but FCSO is the
most stable algorithm in both 10- and 100-dimensional
spaces.

6. Optimization on Engineering Problems

-e CSO algorithm has been widely applied in various
scientific and engineering domains. In the wireless sensor
network (WSN) field, Fouad et al. [25] used it to optimize the
topological structure of the WSN, and Al Shayokh and Shin
[26] and Yu et al. [27] applied the CSO algorithm to handle
the localization problem of the WSN. In the cloud com-
puting domain, CSO has been used to solve deadlock-free

migration of the virtual machine (VM) [28] and dynamic
task scheduling problem [29]. In the military field, CSO is
applied to optimize the warhead’s reentry trajectory [30] and
ascent trajectory of hypersonic vehicles [31]. In the data
mining domain, it is used to optimize the K-means clus-
tering algorithm [32], adaptive neurofuzzy inference system
[33], and feature selection problem [34]. Still, more fields
have CSO been applied to, including architecture [35],
transport [36], mechanical engineering [37], environmental
protection [38], power [39], and robot [40].

Many real-world engineering optimization problems
(EOPs) are very complex in nature and have many con-
strained conditions. It is difficult for the traditional

Table 5: -e time complexities of 9 compared SIO algorithms.

Algorithms Time complexity
FCSO O (D∙N+ (2D∙N+N)∙T+N∙T/G+TFZ∙T /G)≈O (D∙N∙T)
FGA O(D∙N+ (3N∙D+3∙N)∙T+TFZ∙T)≈O (D∙N∙T)
FAFS O (D∙N+ (2N (N− 1) + 4N∙Trynumber∙D)∙T+TFZ∙N∙T)≈O (D∙N∙T∙Trynumber)
FPSO O (D∙N+ (3D∙N+N)∙T+TFZ∙T)≈O (D∙N∙T)
CSO O (D∙N+ (2D∙N+N)∙T+N∙T/G)≈O (D∙N∙T)
ICSO O (D∙N+ (2D∙N+N)∙T+N∙T/G)≈O (D∙N∙T)
GA O (D∙N+ (3N∙D+3∙N)∙T)≈O (D∙N∙T)
AFS O (D∙N+ (2N (N− 1) + 4N∙Trynumber∙D)∙T)≈O (D∙N∙T∙Trynumber)
PSO O (D∙N+ (3D∙N+N)∙T)≈O (D∙N∙T)

Table 6: Summary of the Friedman statistics FF (k � 9 andN � 30) and the critical value in terms of each evaluation criterion.

Dimensions Criteria FF Critical value (α � 0.05)

10-dimensional space

MAX 12.3695

1.9785

MIN 9.86242
MEAN 10.6978
STD 12.2192

100-dimensional space

MAX 14.0527
MIN 18.2798
MEAN 16.4334
STD 16.9399

k: #comparing algorithms; N: #datasets.
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Figure 5: Comparison of FCSO (control algorithm) against other compared algorithms using the Nemenyi test for the experimental results
in the 10-dimensional space. (a) MAX. (b) MIN. (c) MEAN. (d) STD.
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optimization methods (TOMs) to deal with the objective
functions and the constraints with multiple or sharp peaks
due to their unstability [1]. In contrast, SIOAs outperform
TOMs in solving the EOPs. In this section, we apply the
proposed FCSO algorithm to four types of constrained EOPs
to further evaluate the performance of FCSO. -ese engi-
neering optimization problems are often used to test the
performance of SIOAs [11, 15]. In the next, we first intro-
duce these four engineering designs and their constraints
and then present the experiment results of applying the CSO
and FCSO to these problems andmake a brief comparison of
their performance.

6.1. Description of Engineering Optimization Problems. In
this section, the four types of classic engineering design
problems are discussed, including tension/compression
spring [1], pressure vessel design [2], three-bar truss design
[3], and cantilevered beam design [4]. -e description of the
four engineering optimization problems is shown in
Figure 7.

Problem 1. (Tension/compression spring design). -e de-
sign, as shown in Figure 7(a), aims to minimize the weight of
a tension/compression spring. In this design, the constraints,
required in the design, include the minimum deflection,
shear stress, surge frequency, and the limit of outer diameter.
-ere are three designed variables: the average coil diameter
x1, the wire diameter x2, and the number of active coils x3,
which together define the following constraints (named as
F30):

minF16(X) � x3 + 2( x2x
2
1,

s.t. g1(X) � 1 −
x
3
2x3

71785x
3
2
≤ 0,

g2(X) �
4x

2
2 − x1x2

12566 x2x
3
1 − x

4
1 

+
1

5108x
2
1

− 1≤ 0,

g3(X) � 1 −
140.45x1

x
2
2x3
≤ 0,

g4(X) �
x1 + x2

1.5
− 1≤ 0,

where 0.05≤ x1 ≤ 2, 0.25≤x2 ≤ 1.3, 2≤x3 ≤ 15.

(38)

Problem 2. (Pressure vessel design).-e aim of the design of
a cylindrical vessel which is capped at both ends by hemi-
spherical heads, as shown in Figure 7(b), is to solve a hybrid
constrained optimization problem, that is, to minimize the
costs of welding, materials, and forming. -e four variables
to describe this problem are the thickness of the cylindrical
skin (Ts), the thickness of the spherical head (Th), the inner
radius (R), and the length of the cylindrical segment of the
vessel (L). It is required that the thickness of the cylinder can
only be taken as an integral multiple of 0.0625. -is problem

(named F31) is defined as formula (39), and the above four
variables are represented by x1, x2, x3, and x4, respectively.

minF17(X) � 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x

2
1x4

+ 19.84x
2
1x3,

s.t. g1(X) � −x1 + 0.0193x3 ≤ 0,

g2(X) � −x2 + 0.00954x3 ≤ 0,

g3(X) � −πx
2
3x4 −

4
3
πx

3
3 + 1296000≤ 0,

g4(X) � x4 − 240≤ 0,

where 0.0625≤ x1, x2 ≤ 99 × 0.0625, x3 ≥ 10, x4 ≤ 200.

(39)

Problem 3. (-ree-bar truss design). -e objective of this
design is to optimize the volume of a statistically loaded
three-bar truss. -e three-bar truss is subjected to vertical
and horizontal forces, and the volume of the three-bar truss
is subjected to tress constraints. As shown in Figure 7(c), the
lengths of the bars A1 (or A3) and A2 are denoted as x1 and
x2 in the following formula (40), which is used to define the
problem (named as F32):

minF18(X) � 2
�
2

√
x1 + x2(  × l,

s.t. g1(X) �

�
2

√
x1 + x2�

2
√

x
2
1 + 2x1x2

P − σ ≤ 0,

g2(X) �
x2�

2
√

x
2
1 + 2x1x2

P − σ ≤ 0,

g3(X) �
1

x1 +
�
2

√
x2

P − σ ≤ 0,

where 0≤x1 ≤ 1, 0≤ x2 ≤ 1, l � 100 cm,

P � 2 kN/cm2
, and σ � 2 kN/cm2

.

(40)

Problem 4. (Cantilevered beam design).-e design problem
of the cantilevered beam is described in Figure 5(d), and its
goal is to determine the best combination of five different
cross-section areas to minimize the volume of the cantilever
beam. Each cross section has a width and a height, and in
total, there are ten variables, denoted as hi and
bi(i � 1, . . . , 5), respectively, see Figure 7(d).-e constraints
on the design are briefly presented as follows.-e maximum
allowable stress at the left end of each part is
σmax � 14000N/cm2, the material modulus of elasticity is
E� 200GPa, the length of each section li (i � 1, . . . , 5) is
100 cm, the maximum allowable deflection is
ymax � 2.715 cm, and the height-to-width ratio of each cross
section is restricted to less than 20. -is optimization
problem (named as F33) can be defined as follows:
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X � b1, h1, b2, h2, b3, h3, b4, h4, b5, h5 
T

� x1, x2, x3, x4, x5 
T
,

min F19(X) � 100 x1x2 + x3x4 + x5x6 + x7x8 + x9x10( ,

s.t. g1(X) � 10.7143 −
x1x

2
2

103
≤ 0,

g2(X) � 8.5714 −
x3x

2
4

103
≤ 0,

g3(X) � 6.4286 −
x5x

2
6

103
≤ 0,

g4(X) � 4.2957 −
x7x

2
8

103
≤ 0,

g5(X) � 2.1429 −
x9x

2
10

103
≤ 0,

g6(X) � 104
244
x1x

3
2

+
148
x3x

3
4

+
76

x5x
3
6

+
28

x7x
3
8

+
4

x9x
3
10

  − 10.86≤ 0,

g7(X) � x2 − 20x7 ≤ 0,

g8(X) � x4 − 20x3 ≤ 0,

g9(X) � x6 − 20x5 ≤ 0,

g10(X) � x8 − 20x7 ≤ 0,

g11(X) � x10 − 20x9 ≤ 0,

where 1 ≤ xi ≤ 5(i � 1, 3, 5, 7, 9), 30≤ xi ≤ 65(i � 2, 4, 6, 8, 10).

(41)
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Figure 6: Comparison of FCSO (control algorithm) against other compared algorithms using the Nemenyi test for the experimental results
in the 100-dimensional space.
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6.2. Experimental Results’ Analysis of Engineering Optimi-
zation Problems. Previously, we presented the constraint
settings for the problems of the four types of engineering
designs, which can be seen as to seek for an optimal solution
to the problems of F30, F31, F32, and F33. Because FCSO
and CSO are proposed to handle unconstrained optimiza-
tion problems, for the above four constrained engineering
problems, after each evolution operation, the individuals in
FCSO and CSO will judge whether the solutions satisfy the
constraints of engineering problems. If not, they need to be
re-evolved until the constraints are satisfied. -e settings for
the experiment environment are the same as being described
in Section 4.1. In this section, we only discuss the com-
parison results of the performance of the algorithms of CSO
and FSCO. Four criteria, including MAX, MIN, MEAN, and
STD, are selected for performance comparison, and their

results are derived from 10 independent experiments, which
can comprehensively reflect the optimization accuracy and
stability. As shown in Table 7, the FCSO algorithm has
obvious advantage over the CSO algorithm for all the four
engineering problems on all the four criteria, so FCSO
performs well in four engineering problems than the CSO
algorithm.

7. Conclusions and Future Work

As having been already demonstrated, SIOAs possesses a
great advantage in solving NP-hard problems [28]. As a
newly proposed SIO algorithm, CSO has been widely used in
different applications owing to its good characteristics in
recent years, for example, high optimization accuracy [9].
However, generally speaking, the CSO algorithms inherently
suffer from slow convergence speed causing a long execution
time and easily falling into the local optimum, which make it
hard to produce a general optimal solution. In this paper, we
propose a fuzzy chicken swarm optimizationmethod, FCSO,
to improve the normal CSO algorithms by applying the
fuzzy system method to the adjustment of the chicken
number and random factors adaptively.

-e major contributions of this paper to the field of
swarm intelligence include the following three aspects.
Firstly, the fuzzy system has been introduced to the CSO
algorithm for the first time to adaptively adjust random
factors and the number of chickens to address the three

Table 7: Experimental results of four EOPs.

Function Algorithms MAX MIN MEAN STD

F30 CSO 0.014145 0.013208 0.013363 0.000284
FCSO 0.013194 0.012776 0.013007 0.000135

F31 CSO 18187.57 2367.618 7502.164 5331.018
FCSO 12272.28 1864.725 4803.109 2945.724

F32 CSO 267.883 264.7858 266.0553 1.07483
FCSO 267.2195 264.3374 265.2885 1.016607

F33 CSO 87581.08 76219.26 83708.51 4209.323
FCSO 76775.52 73063.19 75500.1 1342.61
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Figure 7: Four engineering optimization problems. (a) -e design of the tension/compression spring. (b) -e pressure vessel design
problem. (c) -ree-bar truss design. (d) -e cantilevered beam.
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monitoring indicative issues, optimization speed, chicken
aggregation, and iteration times. -e introduced fuzzy
system makes an adaptive balance between the exploration
and exploitation capabilities in the CSO algorithm to
overcome the two major drawbacks. Secondly, the cosine
function has been integrated into the solution to the position
update of roosters that can mitigate the randomness of the
original strategy and make the local exploration more ac-
curate with the increase of iteration times.-irdly, we design
a collection of comprehensive experiments in both low- and
high-dimensional spaces with the nine algorithms on 30
BBOB functions to show that the proposed FCSO has ad-
vantages in accuracy and convergence speed. Owing to the
obvious advantages of FCSO, it can be applied to handle the
constrained (as described in Section 6) and unconstrained
optimization problems, especially for the problems requir-
ing high stability and rapid convergence speed. Although
FCSO achieved better results than other SIOAs in both 10-
and 100-dimensional spaces, it performed not very well on
some composition functions (for example, F26, F28, and
F29) in the 100-dimensional space, which indicates that the
fuzzy system needs to be further improved to adapt high-
dimensional complex optimization problems.

In the future, there are efforts required to improve and
extend the proposed method and algorithm. First, in this
work, we only integrate one kind of cosine function into
rooster position update, cosine functions with different pe-
riods and other trigonometric functions should be studied in
depth in order to more clearly determine the timing and
extent of adjusting step length for different optimization
problems, and proper step length can enhance optimization
accuracy and convergence. Second, the membership func-
tions are constructed by experience in this work, and the
influence of different membership functions on the results of
FCSO needs further discussion. For different optimization
problems, it is necessary to study how to choose the most
suitable membership functions, which can improve the
performance of the fuzzy system. -ird, this work mainly
focuses on adaptively adjusting parameters of CSO algorithm,
the learning strategies of FCSO can be further improved by
hybridizing other SIOAs, such as differential evolution (DE)
algorithm [41, 42], and the proposed FCSO can be applied to
more practical optimization problems [43, 44].
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Material A give the accuracy comparison on 10- and 100-
dimensional spaces, respectively; the bold font represents the
optimal values of 9 algorithms. In Supplementary Material
B, Figures S1∼F30 and F31∼F60 show the comparison results
of convergence speed on low- and high-dimensional spaces,
respectively. (Supplementary Materials)

References

[1] A. Sadollah, A. Bahreininejad, H. Eskandar, and M. Hamdi,
“Mine blast algorithm: a new population based algorithm for
solving constrained engineering optimization problems,”
Applied Soft Computing, vol. 13, no. 5, pp. 2592–2612, 2013.

[2] A. H. Gandomi, X.-S. Yang, and A. H. Alavi, “Mixed variable
structural optimization using firefly algorithm,” Computers &
Structures, vol. 89, no. 23, pp. 2325–2336, 2011.

[3] W. Yi, Y. Zhou, L. Gao, X. Li, and C. Zhang, “Engineering
design optimization using an improved local search based
epsilon differential evolution algorithm,” Journal of Intelligent
Manufacturing, vol. 29, no. 7, pp. 1559–1580, 2018.

[4] H.-C. Kuo and C.-H. Lin, “A directed genetic algorithm for
global optimization,” Applied Mathematics and Computation,
vol. 219, no. 14, pp. 7348–7364, 2013.

[5] S. Boyd and L. Vandenberghe, Convex Optimization,
pp. 466–496, Cambridge University Press, Cambridge, UK,
2004.

[6] J. H. Holland, Adaptation in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor, MI, USA, 1975.

[7] K. James and E. Russell, “Particle swarm optimization,”
Neural Networks, vol. 4, pp. 1942–1948, 1995.

[8] X. L. Li, Z. J. Shao, and J. X. Qian, “An optimization method
based on autonomous animats: fish-swarm algorithm,” Sys-
tems Engineering-@eory&Practice, vol. 22, no. 11, pp. 32–38,
2002.

[9] X. B. Meng, Y. Liu, X. Z. Gao, and H. Z. Zhang, “A new bio-
inspired algorithm: chicken swarm optimization,,” in Pro-
ceedings of the 5th International Conference on Swarm In-
telligence, pp. 86–94, Hefei, China, 2014.

[10] D. Wu, S. Xu, and F. Kong, “Convergence analysis and im-
provement of the chicken swarm optimization algorithm,”
IEEE Access, vol. 4, pp. 9400–9412, 2016.

[11] C. W. Qu, S. A. Zhao, Y. M. Fu, and W. He, “Chicken swarm
optimization based on elite opposition-based learning,”
Mathematical Problems in Engineering, vol. 201719 pages,
2017.

[12] B. Li, G. J. Shen, and G. Sun, “Improved chicken swarm
optimization algorithm,” Journal of Jilin University, vol. 49,
no. 4, pp. 1339–1344, 2019.

[13] S. Torabi and F. Safi-Esfahani, “A hybrid algorithm based on
chicken swarm and improved raven Roosting algorithm,” Soft
Computing, vol. 23, pp. 100129–100171, 2018.

16 Mathematical Problems in Engineering

http://downloads.hindawi.com/journals/mpe/2021/8896794.f1.docx


[14] W. Fu, B. Wang, X. Li, L. Liu, and Y.Wang, “Ascent trajectory
optimization for hypersonic vehicle based on improved
chicken swarm optimization,” IEEE Access, vol. 7,
pp. 151836–151850, 2019.

[15] J. Wang, Z. Cheng, O. K. Ersoy, M. Zhang, K. Sun, and Y. Bi,
“Improvement and application of chicken swarm optimiza-
tion for constrained optimization,” IEEE Access, vol. 7,
pp. 58053–58072, 2019.

[16] M. Han and S. Y. Liu, “An improved binary chicken swarm
optimization algorithm for solving 0-1 knapsack problem,” in
Proceedings of 13th International Conference on Computa-
tional Intelligence and Security (CIS), pp. 207–2100, Hong
Kong, China, 2017.

[17] D. Zouache, Y. Ould Arby, F. Nouioua, and F. Ben Abdelaziz,
“Multi-objective chicken swarm optimization: a novel algo-
rithm for solving multi-objective optimization problems,”
Computers & Industrial Engineering, vol. 129, pp. 377–391,
2019.

[18] L. X.Wang,A Course in Fuzzy Systems and Control, pp. 1–448,
Prentice-Hall, Upper Saddle River, NJ, USA, 1996.

[19] A. Jain, K. Nandakumar, and A. Ross, “Score normalization in
multimodal biometric systems,” Pattern Recognition, vol. 38,
no. 12, pp. 2270–2285, 2005.

[20] L. K. Lan, J. W. Zhu, W. L. Liu et al., “New method of fuzzy-
based genetic algorithms,” Computer Engineering and Design,
vol. 29, no. 14, pp. 3714–3718, 2008.

[21] D. Yazdani, A. N. Toosi, and M. R. Meybodi, “Fuzzy adaptive
artificial fish swarm algorithm,” in Proceedings of 23rd Aus-
tralasian Joint Conference, pp. 334–343, Adelaide, Australia,
2010.

[22] Y. H. Shi and R. C. Eberhart, “Fuzzy adaptive particle swarm
optimization,” in Proceedings of Congress on Evolutionary
Computation, pp. 101–106, Seoul, South Korea, 2001.

[23] N. H. Awad, M. Z. Ali, P. N. Suganthan, J. J. Liang, and
B. Y. Qu, Problem Definitions and Evaluation Criteria for the
CEC 2017 Special Session and Competition on Single Objective
Real-Parameter Numerical Optimization, Nanyang Techno-
logical University, Singapore.

[24] J. Derrac, S. Garcia, D. Molina, and F. Herrera, “A practical
tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm intel-
ligence algorithms,” Swarm and Evolutionary Computation,
vol. 1, no. 1, pp. 3–18.

[25] M. M. Fouad, A. I. Hafez, and A. E. Hassanien, “Optimizing
topologies in wireless sensor networks: a comparative analysis
between the grey wolves and the chicken swarm optimization
algorithms,” Computer Network, vol. 163, pp. 1–9, 2019.

[26] M. Al Shayokh and S. Y. Shin, “Bio inspired distributed WSN
localization based on chicken swarm optimization,” Wireless
Personal Communications, vol. 97, no. 4, pp. 5691–5706, 2017.

[27] X. Yu, L. Zhou, and X. Li, “A novel hybrid localization scheme
for deep mine based on wheel graph and chicken swarm
optimization,” Computer Networks, vol. 154, pp. 73–78, 2019.

[28] F. Tian, R. Zhang, J. Lewandowski, K.-M. Chao, L. Li, and
B. Dong, “Deadlock-free migration for virtual machine
consolidation using chicken swarm optimization algorithm,”
Journal of Intelligent & Fuzzy Systems, vol. 32, no. 2,
pp. 1389–1400, 2017.

[29] S. Torabi and F. Safi-Esfahani, “A dynamic task scheduling
framework based on chicken swarm and improved raven
roosting optimization methods in cloud computing,” Journal
of Supercomputing, vol. 74, pp. 2581–2626, 2016.

[30] Y. Wu, B. Yan, and X. Qu, “Improved chicken swarm opti-
mization method for reentry trajectory optimization,”

Mathematical Problems in Engineering, vol. 201813 pages,
2018.

[31] Y. T. Li, Y. Wu, and X. J. Qu, “Chicken swarm-based method
for ascent trajectory optimization of hypersonic vehicles,”
Journal of Aerospace Engineering, vol. 30, no. 5, pp. 1–12, 2017.

[32] N. Irsalinda, I. T. R. Yanto, H. Chiroma, and T. Herawan, “A
framework of clustering based on chicken swarm optimiza-
tion,,” in Proceedings of the 2nd International Conference on
Soft Computing and Data Mining (SCDM), pp. 336–343,
Bandung, Indonesia, 2016.

[33] Roslina, M. Zarlis, and I. T. R. Yanto, “A framework of
training anfis using chicken swarm optimization for solving
classification problem,” in Proceedings of 1st International
Conference on Informatics and Computing (ICIC), pp. 437–
441, Mataram, Indonesia, 2016.

[34] A. I. Hafez, H. M. Zawbaa, E. Emary, H. A. Mahmoud, and
A. E. Hassanien, “An innovative approach for feature selec-
tion based on chicken swarm optimization,” in Proceedings of
7th International Conference of Soft Computing and Pattern
Recognition (SoCPaR), pp. 19–24, Fukuoka, Japan, 2015.

[35] Y. Li, S. Wang, and M. Han, “Truss structure optimization
based on improved chicken swarm optimization algorithm,”
Advances in Civil Engineering, vol. 201916 pages, Article ID
6902428, 2019.

[36] D. He, G. Lu, and Y. Yang, “Research on optimization of train
energy-saving based on improved chicken swarm optimiza-
tion,” IEEE Access, vol. 7, pp. 121675–121684, 2019.

[37] G. Q. Fu, H. W. Gong, H. L. Gao, T. D. Gu, and Z. Q. Cao,
“Integrated thermal error modeling of machine tool spindle
using a chicken swarm optimization algorithm-based radial
basic function neural network,” International Journal of
Advanced Manufacturing Technology, vol. 1005, no. 5,
pp. 2039–2055, 2019.

[38] D. Liu, C. Liu, Q. Fu et al., “Projection pursuit evaluation
model of regional surface water environment based on im-
proved chicken swarm optimization algorithm,” Water Re-
sources Management, vol. 32, no. 4, pp. 1325–1342, 2018.

[39] Z. Q.Wu, D. L. Yu, and X. H. Kang, “Application of improved
chicken swarm optimization for MPPT in photo voltaic
system,” Optimal Control Applications & Methods, vol. 39,
pp. 10029–10042, 2018.

[40] Y. Mu, L. J. Zhang, X. R. Chen, and X. S. Gao, “Optimal
trajectory planning for robotic manipulators using chicken
swarm optimization,” in Proceedings of 8th International
Conference on Intelligent Human-Machine Systems and Cy-
bernetics (IHMSC), pp. 369–373, Hangzhou, China, 2016.

[41] W. Deng, J. J. Xu, X. Z. Gao, and H. M. Zhao, “An enhanced
MSIQDE algorithm with novel multiple strategies for global
optimization problems,” IEEE Transactions on Systems, Man,
and Cybernetics: System, pp. 1–10, 2020.

[42] W. Deng, J. J. Xu, Y. J. Song, and H. M. Zhao, “Differential
evolution algorithm with wavelet basis function and optimal
mutation strategy for complex optimization problem,” Ap-
plied Soft Computing Journal, vol. 100, pp. 1–16, 2020.

[43] W. Deng, J. Xu, H. Zhao, and Y. Song, “A novel gate resource
allocation method using improved PSO-based QEA,” IEEE
Transactions on Intelligent Transportation Systems, pp. 1–9,
2020.

[44] W. Deng, H. L. Liu, J. J. Xu, H. M. Zhao, and Y. J. Song, “An
improved quantum-inspired differential evolution algorithm
for deep belief network,” IEEE Transactions on Instrumen-
tation and Measurement, vol. 69, no. 10, pp. 7319–7327, 2020.

Mathematical Problems in Engineering 17


