
entropy

Review

A Comparative Study of Common Nature-Inspired Algorithms
for Continuous Function Optimization

Zhenwu Wang 1,*, Chao Qin 1 , Benting Wan 2 and William Wei Song 2,3,*

����������
�������

Citation: Wang, Z.; Qin, C.; Wan, B.;

Song, W.W. A Comparative Study of

Common Nature-Inspired

Algorithms for Continuous Function

Optimization. Entropy 2021, 23, 874.

https://doi.org/10.3390/e23070874

Academic Editor: Donald J. Jacobs

Received: 30 April 2021

Accepted: 30 June 2021

Published: 8 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Technology, China University of Mining and Technology,
Beijing 100083, China; sqt1900405077@student.cumtb.edu.cn

2 School of Software and IoT Engineering, Jiangxi University of Finance & Economics,
Nanchang 330013, China; wanbenting@jxufe.edu.cn

3 Department of Information Systems, Dalarna University, S-791 88 Falun, Sweden
* Correspondence: wzw@cumtb.edu.cn (Z.W.); wso@du.se (W.W.S.)

Abstract: Over previous decades, many nature-inspired optimization algorithms (NIOAs) have been
proposed and applied due to their importance and significance. Some survey studies have also been
made to investigate NIOAs and their variants and applications. However, these comparative studies
mainly focus on one single NIOA, and there lacks a comprehensive comparative and contrastive
study of the existing NIOAs. To fill this gap, we spent a great effort to conduct this comprehensive
survey. In this survey, more than 120 meta-heuristic algorithms have been collected and, among
them, the most popular and common 11 NIOAs are selected. Their accuracy, stability, efficiency and
parameter sensitivity are evaluated based on the 30 black-box optimization benchmarking (BBOB)
functions. Furthermore, we apply the Friedman test and Nemenyi test to analyze the performance of
the compared NIOAs. In this survey, we provide a unified formal description of the 11 NIOAs in
order to compare their similarities and differences in depth and a systematic summarization of the
challenging problems and research directions for the whole NIOAs field. This comparative study
attempts to provide a broader perspective and meaningful enlightenment to understand NIOAs.

Keywords: nature-inspired algorithm; meta-heuristic algorithm; swarm intelligence algorithm;
bio-inspired algorithm; black-box optimization benchmarking; statistical test

1. Introduction

Nature-inspired optimization algorithms (NIOAs), defined as a group of algorithms
that are inspired by natural phenomena, including swarm intelligence, biological systems,
physical and chemical systems and, etc. [1]. NIOAs include bio-inspired algorithms and
physics- and chemistry-based algorithms; the bio-inspired algorithms further include
swarm intelligence-based and evolutionary algorithms [1]. NIOAs are an important branch
of artificial intelligence (AI), and NIOAs have made significant progress in the last 30 years.
Thus far, a large number of common NIOAs and their variants have been proposed, such
as genetic algorithm (GA) [2], particle swarm optimization (PSO) algorithm [3], differential
evolution (DE) algorithm [4], artificial bee colony (ABC) algorithm [5], ant colony opti-
mization (ACO) algorithm [6], cuckoo search (CS) algorithm [7], bat algorithm (BA) [8],
firefly algorithm (FA) [9], immune algorithm (IA) [10], grey wolf optimization (GWO) [11],
gravitational search algorithm (GSA) [12] and harmony search (HS) algorithm [13]. In
addition to the theoretical studies of NIOAs, many previous works have made an in-depth
investigation on how the NIOAs are applied to various domains. Single NIOAs have been
reviewed comprehensively [14–25], which present the algorithms and their variants at a
good breadth and depth. In the rest of this chapter, we summarize the current survey work
of the NIOAs, discuss our motivations for this survey, present our research methodologies
and scope of this work and finally, describe our contributions to this field.

Entropy 2021, 23, 874. https://doi.org/10.3390/e23070874 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-8110-1895
https://orcid.org/0000-0001-6643-2971
https://orcid.org/0000-0003-3681-8173
https://doi.org/10.3390/e23070874
https://doi.org/10.3390/e23070874
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23070874
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23070874?type=check_update&version=3

Entropy 2021, 23, 874 2 of 40

1.1. Summary of the Current Survey Work

From our observation, although reviews of specific NIOAs [14–25] are very common,
there have not been many attempts to compare various NIOAs in terms of the general
criteria. Only a few surveys [26–30] (named horizontal NIOAs reviews) adopted the
narrative literature review approach to discuss a series of NIOAs, including their basic
principles, variants and application domains. Specifically, Chakraborty [26] discussed
eight bio-inspired optimization algorithms (BIOAs) that can be divided into insect-based
algorithms, inspired by ants, bees, fireflies and glow-worms and animal-based algorithms,
inspired by bats, monkeys, lions and wolves; Kar [28] detailed the principles, develop-
ments and applications of 12 BIOAs, including the neural networks, GA, PSO, ACO, ABC,
bacterial foraging (BFO) algorithm, CS, FA, shuffled frog leaping algorithm (SFLA), BA,
flower pollination (FP) algorithm and artificial plant optimization algorithm (APOA);
Parpinelli [30] summarized the principles, application fields and meta-heuristics informa-
tion of nine BIOAs, such as bees algorithm, ABC, marriage in honey-bees optimization
(MBO) algorithm, BFO, glow-worm swarm optimization algorithm (GSOA), FA, slime
mold optimization algorithm (SMOA), roach infestation optimization (RIO) algorithm and
BA. In addition to the above reviews, some literature compared the performance of NIOAs
via a series of benchmark functions. Through a number of statistical tests, Ab Wahab [27]
compared seven BIOAs, including GA, ACO, PSO, DE, ABC, GSOA and CS; Chu [29] only
analyzed three BIOAs, including PSO, ACO and ABC, on three benchmark functions.

In all, all the above survey works provide good references for NIOAs, but these reviews
are not comprehensive and in-depth. For example, the survey work [26,28,30] merely
introduces the principles, variants and applications for different BIOAs, without involving
their performance comparison, which provides an important basis to the improvement
and application for BIOAs. Some reviews [27,29] discuss the performance comparison of
BIOAs. However, the comparison in [27] for the seven BIOAs is inadequate because the
chosen BIOAs are incomplete, most benchmark functions are low-dimensional and the
experimental results are only represented by mean error (comparison of convergence speed
is not considered). The review in [29] only compares three BIOAs on three benchmark
functions; the comparison algorithms and experimental work are quite narrow. Besides the
above shortcomings, these problems also exist: selected NIOAs are not popular, and the
criterion of selection is not clear. Furthermore, common challenging problems of NIOAs
have not been extracted and discussed in all the above survey work [26–30]. These are,
for instance, the common characteristics and differences for the NIOAs, the challenges
and future directions for the NIOAs field and the systematic summary of improvement
methods for all the chosen NIOAs, just to mention a few.

1.2. Motivations

As discussed in Section 1.1, the current horizontal NIOAs reviews still have some
important issues that have not been discussed at a sufficient depth; we think it worthwhile
to make a comprehensive comparison and analysis study of the common NIOAs for the
following four reasons.

1. Thus far, questions such as how many NIOAs have been proposed and which
NIOAs are the research hotspots that should be addressed and discussed. It is necessary
to distinguish the hotspots of NIOAs, but it is very difficult to collect all the NIOAs in
an all-around way. With our best effort, we search for NIOAs that we can reach and
identify the hotspot ones from our observation. To our knowledge, no similar work has
been completed, and for existing horizontal NIOAs reviews, either the selection criteria for
NIOAs [27–30] are not clear or the selected algorithms are not common [31–33].

2. Different proposals of the NIOAs for different purposes have created great confusion
as to which method fits what situation, and it is strongly required to understand what
the common characteristics are of these hotspots algorithms and what the differences are.
To study and compare the characteristics of the hotspot NIOAs can provide not only a

Entropy 2021, 23, 874 3 of 40

broader perspective to the improvement of the current NIOAs but also a solid and feasible
cornerstone for building up the new problem-oriented NIOAs.

3. Hybridization is an important method to improve the performance of NIOAs.
When considering a hybridization of different NIOAs, many proposers more often than
not claim that the selected NIOAs have shortcomings to be improved, for example, being
easy to fall into local optimum and having a slow convergence speed, on the one hand,
and consider that some algorithms have advantages that could be utilized as necessary
complements, such as rapid convergence speed and good ability of global exploration, on
the other hand. Thus, in order to validate and compare the performance of these common
NIOAs, a construction of comprehensive experiments of common NIOAs is indispensable.

4. To our knowledge, most survey work focuses on introducing NIOAs’ principles,
variants and application domains and little work has so far been completed to summarize
the general improvement methods for all the chosen NIOAs and to analyze their challenges
and future directions for the whole field of NIOAs, and all these issues are very important
and critical to the development of NIOAs.

It should be noted that some so-called “novel” NIOAs that have been proposed from
time to time are actually ”the same old stuff with a new label” and deteriorate the research
atmosphere of NIOAs. However, this issue is not the scope of this paper. It is undeniable
that there are many excellent works in the field of NIOAs, which have greatly promoted
the development of NIOAs. The main purpose of this work is to objectively analyze the
existing commonly used NIOAs and discuss their characteristics, performance comparison,
challenges and future directions.

1.3. Research Methodology

The research is conducted in multiple stages. Firstly, the meta-heuristic algorithms
(MHAs) that are to be scrutinized are identified, which include NIOAs and non-nature-
inspired optimization algorithms (NNIOAs). There are numerous MHAs, and they are
being developed continuously. Most of the MHAs are independently developed and
conducted and are labeled under the terms of swarm intelligence (SI), BIOA, NIOA and
NNIOA. In this work, we search for MHAs as many as possible from the Web of Science,
Google Scholar dictionary and Scopus database by using specific keywords, such as swarm in-
telligence optimization, intelligent algorithm, heuristic, meta-heuristic, bio-inspired algorithm and
nature-inspired algorithm. After identifying these algorithms, we adopted the Google engine
to confirm whether they are MHAs or not. Then, some “common” (or “hotspot”) NIOAs
are selected to conduct the comparison task, and how to judge whether the algorithm is
“common” has become another problem. In order to identify the “most common” NIOAs,
we compute the average number of articles per year and the total number of published
articles for a candidate NIOA. The total article number of a certain NIOA is computed
through searching algorithm name as TITLE in Web of Science and Scopus databases. The ad-
vantage of this method is to ensure that classic NIOAs, such as GA, PSO, DE, are included
in the comparison work, while those that, compared with the contemporary algorithms
are relatively seldom used in the whole scientific community, are excluded: for example,
the self-organizing migrating algorithm, spiral millipede-inspired routing algorithm and
benchmarking-based optimization algorithm. According to this approach, more than
120 MHAs (see Table S1 in Supplementary Material A) are identified, and among them,
11 NIOAs are selected for scrutiny in this survey work. Through the aforementioned calcu-
lation methods, we include a NIOA which has been discussed in more than 100 published
papers per year and in more than 1000 papers in total (described in Figures 1 and 2, respec-
tively). The statistical performance comparison of these NIOAs is with the BBOB functions;
compared with the functions described by explicit equations, they have uncertainty and
noise, which can ensure the fairness of experimental results.

Entropy 2021, 23, 874 4 of 40
Entropy 2021, 23, x FOR PEER REVIEW 4 of 39

Figure 1. Number of papers published per year until 13 October 2020 (from Web of Science and
Scopus databases).

Figure 2. Total number of papers published until 13 October 2020 (from Web of Science and Sco-
pus databases).

1.4. Scope of Discussion
This survey work focuses on the single objective numerical optimization algorithms,

which are the basis of the more complex optimization algorithms, such as the multi-objec-
tive optimization algorithms and the constrained optimization algorithms. We exclude
the ant colony optimization (ACO) algorithm, ranked 4 in Table S1 of Supplementary Ma-
terial A, from this survey study because it is designed to solve combinatorial optimization
problems (COPs) [6] and is not in the scope of this work. We exclude the “Biogeography-
Based Optimization” algorithm in Table S1 of Supplementary Material A, ranked thir-
teenth from this survey, since its total number of published articles 950, and the average
number of articles published annually 73 both are lower than the values set for this selec-
tion of NIOAs. Finally, we consider that the selected 11 algorithms are reasonable. In this
paper, we do not involve the variant methods and the applications of 11 NIOAs, since
they have been discussed sufficiently in many reviews [14–25]. The selection method of
NIOAs can identify the NIOAs of continuous hotspot research; some less studied algo-
rithms are excluded, although they were brought up a long time ago (see Table S1 in Sup-
plementary Material A).

1.5. Our Contributions
The contributions of this paper are as follows.
1. We present a comprehensive list of more than 120 MHAs, and make a preliminary

statistical analysis of the basic information for the chosen NIOAs, which can provide a
panoramic view for NIOAs study. It is the first attempt to systematically study the existing
NIOAs, even though it is very hard work.

Figure 1. Number of papers published per year until 13 October 2020 (from Web of Science and
Scopus databases).

Entropy 2021, 23, x FOR PEER REVIEW 4 of 39

Figure 1. Number of papers published per year until 13 October 2020 (from Web of Science and
Scopus databases).

Figure 2. Total number of papers published until 13 October 2020 (from Web of Science and Sco-
pus databases).

1.4. Scope of Discussion
This survey work focuses on the single objective numerical optimization algorithms,

which are the basis of the more complex optimization algorithms, such as the multi-objec-
tive optimization algorithms and the constrained optimization algorithms. We exclude
the ant colony optimization (ACO) algorithm, ranked 4 in Table S1 of Supplementary Ma-
terial A, from this survey study because it is designed to solve combinatorial optimization
problems (COPs) [6] and is not in the scope of this work. We exclude the “Biogeography-
Based Optimization” algorithm in Table S1 of Supplementary Material A, ranked thir-
teenth from this survey, since its total number of published articles 950, and the average
number of articles published annually 73 both are lower than the values set for this selec-
tion of NIOAs. Finally, we consider that the selected 11 algorithms are reasonable. In this
paper, we do not involve the variant methods and the applications of 11 NIOAs, since
they have been discussed sufficiently in many reviews [14–25]. The selection method of
NIOAs can identify the NIOAs of continuous hotspot research; some less studied algo-
rithms are excluded, although they were brought up a long time ago (see Table S1 in Sup-
plementary Material A).

1.5. Our Contributions
The contributions of this paper are as follows.
1. We present a comprehensive list of more than 120 MHAs, and make a preliminary

statistical analysis of the basic information for the chosen NIOAs, which can provide a
panoramic view for NIOAs study. It is the first attempt to systematically study the existing
NIOAs, even though it is very hard work.

Figure 2. Total number of papers published until 13 October 2020 (from Web of Science and
Scopus databases).

1.4. Scope of Discussion

This survey work focuses on the single objective numerical optimization algorithms,
which are the basis of the more complex optimization algorithms, such as the multi-
objective optimization algorithms and the constrained optimization algorithms. We exclude
the ant colony optimization (ACO) algorithm, ranked 4 in Table S1 of Supplementary Ma-
terial A, from this survey study because it is designed to solve combinatorial optimization
problems (COPs) [6] and is not in the scope of this work. We exclude the “Biogeography-
Based Optimization” algorithm in Table S1 of Supplementary Material A, ranked thirteenth
from this survey, since its total number of published articles 950, and the average number
of articles published annually 73 both are lower than the values set for this selection of
NIOAs. Finally, we consider that the selected 11 algorithms are reasonable. In this paper,
we do not involve the variant methods and the applications of 11 NIOAs, since they have
been discussed sufficiently in many reviews [14–25]. The selection method of NIOAs
can identify the NIOAs of continuous hotspot research; some less studied algorithms are
excluded, although they were brought up a long time ago (see Table S1 in Supplementary
Material A).

1.5. Our Contributions

The contributions of this paper are as follows.
1. We present a comprehensive list of more than 120 MHAs, and make a preliminary

statistical analysis of the basic information for the chosen NIOAs, which can provide a
panoramic view for NIOAs study. It is the first attempt to systematically study the existing
NIOAs, even though it is very hard work.

Entropy 2021, 23, 874 5 of 40

2. We analyze and summarize the common characteristics and differences of all the
chosen NIOAs to provide a clear insight into the construction, design and application
of NIOAs.

3. We compare and analyze the accuracy, the stability, the efficiency and the pa-
rameter sensitivity of the chosen NIOAs with different function features under high and
low dimensional spaces, respectively, which can reflect the essential characteristics of
each algorithm.

4. We discuss the challenges and future directions of the whole NIOAs field, which
can provide a referencing framework for the future research of NIOAs.

1.6. Structure of the Paper

The rest of this paper is organized as follows. In Section 2, we extracted a unified rep-
resentation as a foundation of comparison for the 11 NIOAs, and under this representation,
the principles of 11 NIOAs have been discussed. In Section 3, the common characteristics
and differences of 11 NIOAs have been analyzed and summarized. Section 4 focuses on the
comparative study of the accuracy, the stability, the efficiency and the parameter sensitivity
of these NIOAs with the 30 BBOB functions, and the Friedman test and Nemenyi test
are constructed to analyze the performance of the compared NIOAs. In addition, the 11
NIOAs are applied to solve a constrained engineering optimization problem in Section 4.
We discuss the challenges and future direction of the NIOAs in Section 5 and conclude this
paper in Section 6.

2. Common NIOAs

Actually, most of the NIOAs have a similar structure, although they are defined in
various forms. In this section, first, the common process will be extracted to offer a unified
description for the NIOAs, and then the principles of the 11 NIOAs will be outlined and
discussed under this unified structure. The unified representation makes it convenient to
analyze the similarity and dissimilarity of these algorithms.

2.1. The Common Process for the 11 NIOAs

The common process of most of NIOAs is described in Figure 3, which can be divided
into four steps. In step S1, the population and related parameters are initialized. Usually,
the initial population is generated by random methods, which ensure it covers as much
solution space as possible; the population size is selected based on expert experience
and specific requirements, and generally, it should be as large as possible. Most NIOAs
use iterative methods, and the maximum iteration times and precision threshold are two
common conditions of algorithm termination, which should also be initialized in step S1.

Entropy 2021, 23, x FOR PEER REVIEW 5 of 39

2. We analyze and summarize the common characteristics and differences of all the
chosen NIOAs to provide a clear insight into the construction, design and application of
NIOAs.

3. We compare and analyze the accuracy, the stability, the efficiency and the param-
eter sensitivity of the chosen NIOAs with different function features under high and low
dimensional spaces, respectively, which can reflect the essential characteristics of each al-
gorithm.

4. We discuss the challenges and future directions of the whole NIOAs field, which
can provide a referencing framework for the future research of NIOAs.

1.6. Structure of the Paper
The rest of this paper is organized as follows. In Section 2, we extracted a unified

representation as a foundation of comparison for the 11 NIOAs, and under this represen-
tation, the principles of 11 NIOAs have been discussed. In Section 3, the common charac-
teristics and differences of 11 NIOAs have been analyzed and summarized. Section 4 fo-
cuses on the comparative study of the accuracy, the stability, the efficiency and the pa-
rameter sensitivity of these NIOAs with the 30 BBOB functions, and the Friedman test and
Nemenyi test are constructed to analyze the performance of the compared NIOAs. In ad-
dition, the 11 NIOAs are applied to solve a constrained engineering optimization problem
in Section 4. We discuss the challenges and future direction of the NIOAs in Section 5 and
conclude this paper in Section 6.

2. Common NIOAs
Actually, most of the NIOAs have a similar structure, although they are defined in

various forms. In this section, first, the common process will be extracted to offer a unified
description for the NIOAs, and then the principles of the 11 NIOAs will be outlined and
discussed under this unified structure. The unified representation makes it convenient to
analyze the similarity and dissimilarity of these algorithms.

2.1. The Common Process for the 11 NIOAs
The common process of most of NIOAs is described in Figure 3, which can be divided

into four steps. In step S1, the population and related parameters are initialized. Usually,
the initial population is generated by random methods, which ensure it covers as much
solution space as possible; the population size is selected based on expert experience and
specific requirements, and generally, it should be as large as possible. Most NIOAs use
iterative methods, and the maximum iteration times and precision threshold are two com-
mon conditions of algorithm termination, which should also be initialized in step S1.

Figure 3. The common process of NIOAs. Figure 3. The common process of NIOAs.

Entropy 2021, 23, 874 6 of 40

The fitness function is the unique indicator that reflects the performance of each
individual solution, and it is designed by the target function (i.e., the BBOB functions will
be described in Section 4.1), which usually has a maximum or minimum value. Generally,
an individual has its own local optimal solution, and the whole population has a global
optimum. In step S2, the fitness values of the population in each iteration are computed,
and if the global best solution satisfies the termination conditions, NIOAs will output the
results (in step S4). Otherwise, step S3 is implemented, which performs the key operations
(defined by various components or operators) to exchange information among the whole
population in order to evolve excellent individuals. Then, the population is updated,
and the workflow jumps to step S2 to execute the next iteration. According to the above
process, a set of commonly used symbols are given in Table 1 as a unified description for
the 11 NIOAs, where D represents the dimension number of objective functions, M is the
individual number of each NIOA and N the total iterative times.

Table 1. The common symbols of NIOAs.

Conceptions Symbols Description

Space dimension D, 0 < d ≤ D The problem space description
Population size M, 0 < i ≤ M Individual quantity
Iteration times N, 0 < t ≤ N Algorithm termination condition

Individual position xi(t) =
(

xi,1(t), . . . , xi,d(t), . . . , xi,D(t)
) The expression of the ith solution on the tth iteration, also used

to represent the ith individual
Local best solution pi(t) =

(
pi,1(t), . . . , pi,d(t), . . . , pi,D(t)

)
Local best solution of the ith individual on the tth iteration

Global best
solution pg(t) =

(
pg,1(t), . . . , pg,d(t), . . . , pg,D(t)

)
Global best solution of the whole populationon the tth iteration

Fitness function f (·) Unique standard to evaluate solutions
Precision threshold δ Algorithm termination condition

2.2. The Principles of the 11 NIOAs
2.2.1. Genetic Algorithm (GA)

Holland [2] proposed the GA algorithm, which is based on natural selection (named
“selection operator so”), genetic (named “crossover operator co”) and mutation (named
“mutation operator mo”) mechanisms. The encoding method of the GA algorithm is decided
by the specific problems, and common encoding schemes include binary, natural number,
real number, matrix, tree and quantum. There are many types of selection, crossover
and mutation operators, such as roulette wheel selection, stochastic universal sampling,
local selection and tournament selection for so, one-point crossover, two-point crossover,
multi-point crossover and uniform crossover for co and the basic mutation operator (that
chooses one or more genes to randomly change), the inversion operator (that randomly
chooses two gene points to inverse the genes between two points), for mo. The types of
three operators are associated with the encoding schemes. Supposing ϑ1, ϑ2 and ϑ3 are
the probabilities of selection, crossover and mutation, respectively, the steps of the GA
algorithm are described as Algorithm 1.

Algorithm 1 GA

Input: the parameters M, N, δ, ϑ1, ϑ2 and ϑ3
Begin
S1: encode and initialize M individuals xi(t) randomly, 0 < i ≤ M, iterative times t = 1;
S2: compute f (i), 0 < i ≤ M, update pg(t), if it satisfies (t > N or precision ≤ δ), then go to step
S4; otherwise, go to step S3;
S3: execute so, co and mo operations to generate new solutions according to ϑ1, ϑ2 and ϑ3, iterative
times t = t + 1; go to step S2;
S4: output the optimized results.
End

Entropy 2021, 23, 874 7 of 40

2.2.2. Particle Swarm Optimization (PSO) Algorithm

Kennedy [3] put forward the PSO algorithm, which simulated the bird swarm behavior.
The movement method, represented by the position and velocity of the ith individual in the
dth dimension for the (t + 1)th iteration, is described in Equation (1).

vi,d(t + 1) = vi,d(t) + c1 ∗ rand1 ∗ (pi,d(t)− xi,d(t)) + c2 ∗ rand2 ∗
(

pg,d(t)− xi,d(t)
)

xi,d(t + 1) = xi,d(t) + vi,d(t + 1)
(1)

where c1 and c2 are the learning factors, rand1 and rand2 are random numbers
uniformly distributed in the range [0, 1] and the velocity vi(t) is defined as
vi(t) = (vi,1(t), . . . , vi,d(t), . . . , vi,D(t)). The steps of the PSO algorithm are described as
Algorithm 2.

Algorithm 2 PSO

Input: the parameters M, N, δ, c1 and c2
Begin
S1: initialize xi(t) and vi(t) randomly, 0 < i ≤ M, iterative times t = 1;
S2: compute f (i) , 0 < i ≤ M, update pi(t) and pg(t), if it satisfies (t > N or precision ≤ δ), then
go to step S4; otherwise, go to step S3;
S3: update xi(t) and vi(t) according to Equation (1), iterative times t = t + 1; go to step S2;
S4: output the optimized results.
End

2.2.3. Artificial Bee Colony (ABC) Algorithm

Karaboga [5] presented the ABC algorithm, and there are three kinds of bees: em-
ployed foragers, scouts and onlookers. An employed forager associates with one food
source and shares it with other bees by certain probability; scouts are in charge of search-
ing new food sources and onlookers find food sources through sharing information with
employed foragers. The position of the ith individual on the tth iteration is xi(t) that is
generated by Equation (2).

xi,d(t) = Ld + rand(0, 1) ∗ (Ud − Ld) (2)

Here, Ld and Ud are the lower and upper bounds in the dth dimensional space, respectively;
rand (0, 1) is the random number uniformly distributed in the range (0, 1). Employed
foragers search for new food sources according to Equation (3).

vi,d(t + 1) = xi,d(t) + ϕ
(

xi,d(t)− xj,d(t)
)

(3)

where 0 < i, j ≤ M, i 6= j, ϕ is the random number uniformly distributed in the range
(0, 1). Onlookers choose food sources according to Equations (4) and (5),

pi =
f iti

∑N
i=1 f iti

(4)

f iti =

{
1

1+ f (i) , f (i) ≥ 0
1 + abs(f (i)), otherwise

(5)

If a food source cannot be updated after Limit times searches, the ABC algorithm
deletes it and the corresponding employed forager changes to the scout; supposing there are
F employed foragers initially, the steps of the ABC algorithm are described as Algorithm 3.

Entropy 2021, 23, 874 8 of 40

Algorithm 3 ABC

Input: the parameters M, N, δ, F, Limit
Begin
S1: initialize M individuals xi(t) randomly by Equation (2), and appoint M

2 bees to the employed
foragers, iterative times t = 1;
S2: compute f (i), 0 < i ≤ M, update pg(t); if it satisfies (t > N or precision ≤ δ), then go to step
S4; otherwise, go to step S3;
S3: employed foragers search new food sources by Equation (3) and compute f (i); update the
food sources if the new one is better than the old one; onlookers choose food sources of employed
foragers according to Equations (4) and (5), and generate new food sources by Equation (3);
update the food sources if the new one is better than the old one; if there are some food sources
which need to be given up (cannot be optimized after Limit times searches); the corresponding
bees become the scouts, and generate new sources by Equation (2); increase times t = t + 1, go to
step S2;
S4: output the optimized results.
End

2.2.4. Bat Algorithm (BA)

Yang [8] presented the BA algorithm that is based on the echolocation behavior of
bats. Suppose the frequency of a sound wave is Freq ∈ [Freqmin, Freqmax], Freqmin and
Freqmax lower and upper bound, respectively. The sound intensity and pulse emissivity
are defined as A ∈ [Amin, Amax] and r, respectively; the individuals update their positions
by Equation (6).

Freqi = Freqmin + (Freqmax − Freqmin) ∗ βi
vi(t + 1) = vi(t) +

(
xi(t)− pg(t)

)
∗ Freqi

xi(t + 1) = xi(t) + vi(t + 1)
(6)

where βi is the random number uniformly distributed in the range [0,1]. The bat generates
a new solution by Equation (7),

xnew = xold + ε ∗ A (7)

where ε is the random number in the range [−1, 1], A is the average sound intensity of all
the bats. Ai and ri are updated by Equations (8) and (9):

Ai(t + 1) = α ∗ Ai(t) (8)

ri(t + 1) = r0
i ∗ [1− exp(−γ ∗ t)] (9)

where α and γ are two constants, r0
i is the initialized value of r, the steps of the BA algorithm

are described as Algorithm 4.

Algorithm 4 BA

Input: the parameters M, N, δ, Freq, A, α and γ

Begin
S1: initialize M individuals xi(t) randomly, 0 < i ≤ M, iterative times t = 1;
S2: compute f (i), 0 < i ≤ M, update pg(t); if it satisfies (t > N or precision ≤ δ), then go to step
S4; otherwise, go to step S3;
S3: update Freq, xi(t) and vi(t) by Equation (6), generate a random number rand1, if rand1 > r,
the bat with the global optimum generates a new solution by Equation (7). Bats generate new
solutions randomly, and BA generates a random number rand2; if rand2 < A and the new
solution is better than the old one, BA updates the corresponding position by Equation (7), and
updates Ai and ri by Equations (8) and (9); iterative times t = t + 1, go to step S2;
S4: output the optimized results.
End

Entropy 2021, 23, 874 9 of 40

2.2.5. Immune Algorithm (IA)

In 1958, Burnet [34] presented clonal selection theory, and Bersini [10] first used an
artificial immune system to solve the discrete problem. Generally speaking, the common
immune algorithm (IA) adopts the learning strategy similar to GA, while IA uses the
affinity to guide the searching process [35]. The affinity is defined by information entropy;
the average information entropy H(i, j) of antibodies i and j is described as follows.

H(i, j) =
1
D

D

∑
l=1

Hl(i, j) (10)

where Hl(i, j) = ∑s
z=1−pzl log pzl , indicates the information entropy of the lth bit of genes

for antibodies i and j. pzl is the probability of regarding the lth bit of genes for antibodies
i and j as the gene letter Kz, Kz ∈ {K1, K2, . . . , Ks}; s is the number of gene letters. The
affinity between antibodies i and j reflects the similarity of two antibodies, which is defined
as follows.

Ai,j =
1

1 + H(i, j)
(11)

The concentration of antibodies reflects the diversity of the whole population. The
density of the ith antibody is described as follows.

Coni =
1
M

M
∑

j=1
Cij

Cij =

{
1
0

Ai,j ≥ h1
Ai,j < h1

, j = 1, 2, . . . , M
(12)

where h1 is the threshold of the affinity. The activity degree refers to the comprehensive
ability of the antibody to respond to antigen and be activated by other antibodies; generally,
the antibody with large affinity and small concentration will have a large activity degree.
The activity degree of the ith antibody is defined as follows.

Acti =


f iti(1−Coni)

∑M
i=1 f iti∗Coni

, Deni ≥ h2

f iti

∑M
i=1 f iti∗Coni

, Deni < h2
(13)

where f iti is the fitness value of the ith antibody, Coni is the concentration of the ith antibody,
and h2 is the threshold of antibody density. The steps of IA are described as Algorithm 5.

Algorithm 5 IA

Input: the parameters M, N, δ, Pc, Pm
Begin
S1: initialize M antibodies xi(t) randomly, 0 < i ≤ M, iterative times t = 1;
S2: compute f (i) , 0 < i ≤ M, update pg(t); if it satisfies (t > N or precision ≤ δ), then go to step
S4; otherwise, go to step S3;
S3: compute the affinity, the concentration and activity degree according to Equations (11), (12)
and (13); the selection operation is executed by the roulette method to choose antibodies with
large activity degree, and then execute crossover and mutation operations according to the
probabilities Pc and Pm, respectively; iterative time t = t + 1, go to step S2;
S4: output the optimized results.
End

2.2.6. Firefly Algorithm (FA)

The FA [9] algorithm was proposed by Yang Xin-She, and its main operations are
the update of firefly luminance I, the computation of firefly attraction degree β and the
update of firefly position. Suppose the attraction factor is γ, maximum luminance is I0, the

Entropy 2021, 23, 874 10 of 40

maximum attraction degree is β0 and the step factor is step. The luminance is defined as
Equations (14) and (15).

I = I0 ∗ exp
(
−γ ∗ ri,j

)
(14)

ri,j =

√√√√ D

∑
k=1

(
xi,k − xj,k

)2
(15)

The attraction degree is described as Equation (16).

β
(
ri,j
)
= β0 ∗ exp

(
−γ ∗ r2

i,j

)
(16)

Equation (17) defines the position updating of the ith firefly when it moves toward
the jth firefly. Here, xi(t) and xj(t) are the positions of the ith firefly and the jth firefly,
respectively, at the iteration t. For convenience, we use xi(t) to represent the ith firefly.

xi(t + 1) = xi(t) + β
(
ri,j
)
∗
(
xj(t)− xi(t)

)
+ step ∗ εi (17)

where εi is the random number that follows Gaussian distribution or uniform distribution.
The steps of FA are described as Algorithm 6.

Algorithm 6 FA

Input: the parameters M, N, δ, I0, β0 and step
Begin
S1: initialize M individuals xi(t) randomly, 0 < i ≤ M, iterative times t = 1;
S2: compute f (i), 0 < i ≤ M, if t > 1 and the new position is better than the old one, update xi(t)
and pg(t); if it satisfies (t > N or precision ≤ δ), then go to step S4; otherwise, go to step S3;
S3: for the ith firefly xi(t), FA searches another firefly (suppose the jth firefly xj(t), and i 6= j) in the
population that has the luminance calculated with Equation (14). If the luminance of xj(t) is larger
than that of xi(t), xi(t) moves toward xj(t) by Equation (17), iterative times t = t + 1; go to step S2;
S4: output the optimized results.
End

2.2.7. Cuckoo Search (CS) Algorithm

The CS [7] algorithm was also put forward by Yang Xin-She, based on the brood
parasitism of certain cuckoos species and the Lévy flights characteristics. The CS algorithm
follows three idealized rules: (1) each cuckoo lays one egg at a time and dumps its egg in
the randomly selected nest; (2) the best nest with the highest quality of eggs will carry over
to the next generations; (3) the number of available host nests is fixed, and the egg laid by
a cuckoo would be discovered by the host bird with a probability pa ∈ [0, 1], that is, the
fraction pa of M nests would be replaced by the new nests. The ith individual updates its
host nest xi(t) by Equation (18),

xi(t + 1) = xi(t) + α⊗ Levy(λ) (18)

where α is the scaling factor of step size and α usually equals 1. The product ⊗ means
entrywise multiplications and Levy(λ) indicates that the Lévy flight draws from the Lévy
distribution. It is difficult to satisfy the real Lévy distribution, and Equation (19) is usually
used to approximate Lévy flight:

s =
u

|v|
1
β

(19)

where u and v follow the Guassian distribution, u ∼ N
(
0, σ2), v ∼ N(0, 1),

σ =

 Γ(1+β)sin
(

πβ
2

)
βΓ
(

1+β
2

)
2

β−1
2


1
β

, β = 1.5. Some cuckoo eggs may be found and discarded by

Entropy 2021, 23, 874 11 of 40

the host, and the probability of abandonment is pa. When a cuckoo egg is abandoned, the
cuckoo needs to find a new boarding site and update it with the following Equation (20):

xi(t + 1) = xi(t) + αs⊗ H(pa − ε)⊗
(
xj(t)− xk(t)

)
(20)

where xj(t) and xk(t) are two different solutions selected randomly by random permutation,
H () is a Heaviside function, ε is a random number drawn from a uniform distribution, s is
the step size that is defined as a random number in the scope of (0, 1) and α is a scaling
factor of step size. The steps of the CS algorithm are described as Algorithm 7.

Algorithm 7 CS

Input: the parameters M, N, δ, α and pa
Begin
S1: initialize M host nests xi(t) randomly, 0 < i ≤ M, iterative times t = 1;
S2: compute f (i), 0 < i ≤ M, update pg(t); if it satisfies (t > N or precision ≤ δ), then go to step
S4; otherwise, go to step S3;
S3: choose a cuckoo randomly to generate a new solution by Equation (18); choose a nest among
M individuals randomly; if the new solution is better than the chosen nest, replace it; a fraction
(pa) of the worst nests are replaced by the new nests by Equation (20), iterative times t = t + 1; go
to step S2;
S4: output the optimized results.
End

2.2.8. Differential Evolution (DE) Algorithm

The DE [4] algorithm, proposed by Storn, has three operations: mutation, crossover
and selection, but is different from the GA algorithm. The main differences are: (1) in GA,
two sub-individuals are generated by crossing two parent individuals, whereas in DE, new
individuals are generated by perturbing the different vectors of several individuals; (2) in
GA, the progeny individual replaces the parent individual with a certain probability, while
in DE, the individual is only updated when the new individual is better than the old one.
More specifically, the basic strategy of DE can be described as follows.

1. Mutation operation
Each individual xi(t) can execute the mutation operation according to Equation (21),

vi,j(t) = xr1,j(t) + F
(
xr2,j(t)− xr3,j(t)

)
(21)

where xr1(t), xr2(t) and xr3(t) are three individuals selected randomly from the whole
population, r1 6= r2 6= r3 6= i and F ∈ [0, 2] is the mutation factor.

2. Crossover operation
The crossover individual ui(t) = (ui,1(t), ui,2(t), . . . , ui,D(t)) can be generated by the

mutation individual vi(t) and its parent individual xi(t), as described in Equation (22),

ui,j(t) =

{
vi,j(t) i f rand ≤ CR or j = j_rand
xi,j(t) i f rand > CR and j 6= j_rand

(22)

where rand is a random number in the range [0, 1], CR is the crossover factor and it is a
constant in the range [0, 1]; j_rand is an integer selected randomly from the range [1, D].

3. Selection operation
The DE algorithm adopts the “greedy” strategy; the next-generation individual is

chosen between parent individual xi(t) and the crossover individual ui(t), which has the
better fitness value, as described in Equation (23).

xi(t) =

{
xi(t) i f f (xi(t)) is better than f (ui(t))
ui(t) otherwise

(23)

The steps of the DE algorithm are described as Algorithm 8.

Entropy 2021, 23, 874 12 of 40

Algorithm 8 DE

Input: the parameters M, N, δ, F and CR
Begin
S1: initialize M individuals xi(t) randomly, 0 < i ≤ M, iterative times t = 1;
S2: compute f (i), 0 < i ≤ M, update pg(t); if it satisfies (t > N or precision ≤ δ), then go to step
S4; otherwise, go to step S3;
S3: execute mutation operation by Equation (21), execute crossover operation by Equation (22)
and execute selection operation by Equation (23), iterative times t = t + 1; go to step S2;
S4: output the optimized results.
End

2.2.9. Gravitational Search Algorithm (GSA)

The GSA [12] algorithm was proposed by Esmat Rashedi which is based on the law of
gravity and mass interactions. On the tth iteration, the force acting on particle xi(t) from
particle xj(t) is defined as Equation (24),

Fd
i,j(t) = G(t) ∗

Ipi ∗ Iaj

Ri,j(t) + ε
∗
(

xt
j,d − xt

i,d

)
(24)

where Ipi is the active gravitational mass related to the particle xj(t), Iaj is the passive
gravitational mass related to the particle xi(t), ε is a small constant, G(t) is the gravitational
constant at iteration t, which is defined as Equation (25):

G(t) = G0 ∗ e−α∗t/N (25)

where G0 = 100 and α = 20. Ri,j(t) is the Euclidian distance between two particles xi(t)
and xj(t), described as follows.

Ri,j(t) =

√√√√ D

∑
k=1

(
xt

i,k − xt
j,k

)2
(26)

On the tth iteration, the total force acting on the particle xi(t) in the dimension d is
defined as Equation (27),

Fd
i (t) =

M

∑
j=1,j 6=i

randj ∗ Fd
i,j(t) (27)

where randj is a random number in the interval [0, 1], the acceleration of the particle xi(t)
in the dimension d is defined as Equation (28):

ad
i (t) =

Fd
i (t)

Iii(t)
(28)

where Iii(t) is the inertial mass of particle xi(t); one particle updates its velocity and
position according to its acceleration, as described in Equation (29).

vi,d(t + 1) = randi ∗ vi,d(t) + ad
i (t)

xi,d(t + 1) = xi,d(t) + vi,d(t + 1)
(29)

The GSA algorithm updates the gravitational and inertial masses by Equation (30).

Iai = Ipi = Iii = Ii, i = 1, 2, . . . , M
ii(t) =

fi(t)−worst(t)
best(t)−worst(t)

Ii(t) =
ii(t)

∑M
j=1 ij(t)

(30)

Entropy 2021, 23, 874 13 of 40

where fi(t) is the fitness value of the particle xi(t), best(t) and worst(t) represent the
best and the worst fitness value among all the particles, respectively; they are defined as
Equation (31).

best(t) =
best

j ∈ {1, 2, . . . , M} f j(t)

worst(t) =
worst

j ∈ {1, 2, . . . , M} f j(t)
(31)

The steps of the GSA algorithm are described as Algorithm 9.

Algorithm 9 GSA

Input: the parameters M, N, δ, G0, α

Begin
S1: initialize M particles xi(t) randomly, 0 < i ≤ M, iterative times t = 1;
S2: compute f (i), 0 < i ≤ M, update pg(t); if it satisfies (t > N or precision ≤ δ), then go to step
S4; otherwise, go to step S3;
S3: update G(t) by Equation (25), update best(t) and worst(t) by Equation (31), update Ii(t) by
Equation (30), calculate Fd

i (t) by Equation (27), compute ad
i (t) by Equation (28), update

vi,d(t + 1) and xi,d(t + 1) by Equation (29), iterative times t = t + 1; go to step S2;
S4: output the optimized results.
End

2.2.10. Grey Wolf Optimizer (GWO)

Grey wolf optimizer was proposed in 2014, in which four types of grey wolves are
employed for simulating the leadership hierarchy, including alpha (α), beta (β), delta (δ)
and omega (ω). The α wolf is called the dominant wolf because his/her orders should be
followed by the pack, the β wolf is probably the best candidate to be the α wolf in case the
latter passes away or becomes very old, the δ wolf should respect the α but commands the
other lower-level wolves as well, the lowest ranking grey wolf is ω and it plays the role of
scapegoat. Grey wolves encircle prey during a hunt. In GWO, the encircling behavior can
be described by the following equations:

D =
∣∣C ∗ xp(t)− x(t)

∣∣ (32)

x(t + 1) = xp(t)− A ∗ D (33)

where A and C are coefficient vectors, xp(t) is the position vector of the prey (the solution)
and x(t) is the position vector of a grey wolf. A and C are calculated as follows,

A = 2 ∗ a ∗ r1 − a (34)

C = 2 ∗ r2 (35)

where a is linearly decreased from 2 to 0 over the course of iterations, r1 and r2 are random
values in the scope of [0, 1]. In order to mathematically simulate the hunting behavior of
grey wolves, GWO supposes that α, β and δ have better knowledge about the potential
location of prey; it saves the first three best solutions obtained so far and oblige the
other wolves to update their positions according to the position of the best search wolves,
described as follows.

Dα = |C1 ∗ xα(t)− x(t)| (36)

Dβ =
∣∣C2 ∗ xβ (t)− x(t)

∣∣ (37)

Dδ = |C3 ∗ xδ (t)− x(t)| (38)

x1 = xα − A1 ∗ Dα (39)

x2 = xβ − A2 ∗ Dβ (40)

x3 = xδ − A3 ∗ Dδ (41)

Entropy 2021, 23, 874 14 of 40

x(t + 1) =
x1 + x2 + x3

3
(42)

Here, A1, A2, A3 and C1, C2,C3 are the coefficients that are generated by different random
values. The steps of the GWO algorithm are described as Algorithm 10.

Algorithm 10 GWO

Input: the parameters M, N, δ

Begin
S1: initialize M individuals xi(t) randomly, 0 < i ≤ M, iterative times t = 1;
S2: compute f (i), 0 < i ≤ M, rank the solutions and find the current top three best
wolves: xα(t), xβ(t) and xδ(t); if it satisfies (t > N or precision ≤ δ), then go to step S4; otherwise,
go to step S3;
S3: update the solution of each individual via Equation (42), update coefficients a, A and C,
iterative times t = t + 1; go to step S2;
S4: output the optimized results.
End

2.2.11. Harmony Search (HS) Optimization

Harmony search (HS) optimization algorithm [13] is inspired by improvization in
music-playing. In a band, all players adjust their pitch to achieve a wonderful harmony. In
the process of global optimization, all decision variables constantly adjust their own values
to make the objective function achieve global optimization. A harmony memory (HM)
with size given by the parameter HMS (harmony memory size) stores the best harmony
vectors during the optimization. A new harmony vector x′i(t) =

(
x′1(t), x′2(t) . . . , x′D(t)

)
is

generated from the HM based on memory considerations, pitch adjustments and random-
ization. For x′i(t), i = 1, 2, . . . , D, it chooses a new value using the parameter of harmony
memory considering rate (HMCR), which varies between 0 and 1 as follows.

x′i(t) =

{
xj

i(t) j ∈ {1, 2, . . . , HMS} r1 ≤ HRCM
x′i(t) ∈ Xi else

(43)

Equation (43) indicates that x′i(t) would be updated from HM if a random-generated
number r1 is less than or equal to HMCR, and would be randomly chosen one feasible value
from Xi, which is the definition space of the ith dimensional variable. Every component
x′i(t) is examined to determine whether it should be pitch-adjusted. The procedure uses
the parameter of pitch adjusting rate (PAR) that sets the rate of adjustment for the pitch
chosen from the HM as follows.

x′i(t) =

{
x′i(t) + α r2 ≤ PAR
x′i(t) otherwise

(44)

Here, r2 is a random-generated number and α is defined in Equation (45):

α = BW ∗ u(−1, 1) (45)

where BW is an arbitrary distance band width for continuous design variable, and u(−1, 1)
is a uniform distribution between −1 and 1. The steps of the HS algorithm are described as
Algorithm 11.

Entropy 2021, 23, 874 15 of 40

Algorithm 11 HS

Input: the parameters M (or HMS), N, δ, HMCR, PAR and BW
Begin
S1: initialize the harmony memory filled with M solutions that are randomly generated, iterative
times t = 1;
S2: compute f (i), 0 < i ≤ M, update pg(t); if it satisfies (t > N or precision ≤ δ), then go to step
S4, otherwise, go to step S3;
S3: generate new harmony according to Equations (43) and (44); if it is better than one harmony in
HM, replace it, iterative times t = t + 1; go to step S2;
S4: output the optimized results.
End

3. Theoretical Comparison and Analysis of the 11 NIOAs
3.1. Common Characteristics

As shown in Section 2, although the NIOAs simulate different population behaviors,
all of them are the iterative methods and have some common characteristics which satisfy
the Reynolds model [36] and this model describes the basic rules for the aggregation motion
of the simulated flock created by a distributed behavioral model.

1. Randomicity. Randomicity is the uncertainty of an event with a certain probability
and can enhance the global search capability of individuals. All the 11 NIOAs initialize
individuals randomly, which can cover the space as large as possible, some other mech-
anisms have been adopted in them which can enhance the exploration and exploitation
abilities, such as the mutation operators mo in GA, IA and DE, the random parameters
rand1 and rand2 in PSO, rand(0, 1) and ϕ in ABC, βi and ε in BA, εi in FA, Lévy flight in CS,
rand and randj in DE, randj and randi in GSA, r1, r2,A1, A2, A3 and C1, C2, C3 in GWO,
u(−1, 1) in HS, etc.

2. Information Interactivity. The individuals in the NIOAs should exchange infor-
mation directly or indirectly, which can increase the probability of obtaining the global
optimum. For instance, GA, IA and DE adopt the crossover operator co to exchange in-
formation; for PSO, each particle utilizes the global optimum pg(t) to update its position;
employed foragers or onlookers in ABC update their velocities vi,d(t + 1) using another
different position xj,d(t); bats in BA use global optimum pg(t) to update their positions; in
FA, firefly xi(t) moves toward xj(t) through mixing the positions information of xi(t) and
xj(t); as to GSA, the force Fd

i,j(t) is computed according to the positions of particles xi(t)
and xj(t), which are used to update the position of each particle; the wolf in GWO updates
its position according to the positions of wolves α, β and δ; and at last but not least, a new
harmony in HS is generated from HM.

3. Optimality. The individuals in the NIOAs move toward the global best solution
through different mechanisms of information exchange. For example, the good genes
in GA and DE are chosen as the next generation through the operators so, co and mo;
particles in PSO update their positions, influenced by the local optimum pi(t) and the
global optimum pg(t); onlookers in ABC choose the food sources that have better fitness
than the old one, the bat in BA generates a new solution and updates its position only
if the new solution is better than the old one; the good antibodies in IA would save in a
memory database to participate in the next iteration; as to FA, one firefly moves toward the
fireflies that have larger luminance; CS replaces solutions only when the new one is better
than the chosen solution and a fraction of worse solutions will be replaced by the newly
generated solutions; in GSA, the gravitational and inertial masses are calculated by the
fitness evaluation and the better individuals have higher attractions and walk more slowly;
wolves in GWO update their positions according to the positions of wolves α, β and δ,
which have better solutions in the wolf population; and a new harmony vector in HS can
replace the old harmony in HM only if the new harmony is better than the old one.

In addition to the aforementioned common characteristics of theoretical implementa-
tion, these common NIOAs are varied to different versions to handle different problems,

Entropy 2021, 23, 874 16 of 40

including combinational optimization problems (COPs) and multi-objective optimization
problems (MOOPs). Similar variant methods are adopted to improve the optimization
performance of NIOAs, for example, adaptive technology, fuzzy theory, chaos theory, quan-
tum theory and hybridization technology. The classic articles about the above work are
listed in Section 3.2, which provides a comprehensive summary of the 11 different NIOAs.

3.2. Variant Methods of Common NIOAs

The summarization of variant methods in other survey work [26–30] are fragmented;
in this work, we systematically summarize the popular variants of the 11 common NIOAs,
and the popular methods are described in Table 2; because of the massive papers, the
summarized literature are the state-of-the-art or representative papers, and the super-
script is the citation times from the Web of Science and Scopus databases (by the end of 13
October 2020).

Table 2. The popular variants of 11 original NIOAs.

NIOAs Multiple
Objectives

Adaptive
Spatial Property Hybridization

Discrete Continuous Fuzzy
Theory

Chaos
Theory

Combination
among NIOAs Others

GA [37]3594

[38]44334 [39]204 [40]142

[41]73
[42]1405

[43]831 [44]305 [45]195 [46]420

[47]1373
[43]831

[48]355

PSO [49]800

[50]67
[51]2363

[52]914
[53]732

[54]640 [55]296 [52]914 [56]252 [57]381

[58]11

[59]214

[60]154

[50]67

ABC [61]334 [62]47 [63]235

[64]851 [5]3932 [65]42 [66]197 [67]122 [68]428

BA [69]433 [70]204 [71]560

[72]285 [73]136 [74]27 [75]158 [76]64 [73]136

FA [77]81 [78]66 [79]43

[80]165 [81]142 [82]45 [83]140 [84]99 [85]56

IA [86]166 [87]97 [88]157 [89]141 [90]205

[91]17 [91]17 [92]166 [93]230

CS [94]192 [95]114 [96]142

[97]438 [7]2801 [98]41 [99]104 [100]77 [101]308

DE [102]350 [103]198 [104]375

[105]219 [4]1925 [106]251 [107]86 [108]70

[109]257 [110]81

GSA [111]135 [112]216 [113]133

[114]114 [12]5909 [115]154 [116]145 [117]253 [118]152

GWO [119]627 [120]60 [121]28 [16]6135 [122]225 [123]188 [124]29 [125]105

HS [126]221 [127]186 [128]429 [18]6808 [129]38 [130]345 [131]194 [132]133

As described in Table 2, the following observations have been made:
(1) All of the 11 common NIOAs have their versions of handling MOOPs and COPs

and have been improved through adopting various adaptive strategies, for example,
automatically tuning parameters.

(2) Some classic mathematical and physical theories have been used to enhance
the performance of NIOAs, such as fuzzy theory [133], chaos theory [56] and quantum
theory [48,132], and the exploration and exploitation abilities of NIOAs.

(3) Hybridization is another major method of improving the performance of NIOAs,
which make combinational use of the advantages of multiple NIOAs, for instance, GA-
IA [38], GA-PSO [47], PSO-ABC [134], PSO-BA [135], BA-DE [76], FA-DE [84], IA-DE [92],
CS-GA [100], ABC-DE [108], DE-PSO [57,109], PSO-GSA [117] and PSO-EDAs [58]. In
addition, some other methods are also hybridized to improve the performance of NIOAs,
such as the Taguchi method [43,60], the Gradient algorithm [59] and the Nelder–Mead
simplex method [68].

In general, the proposers maintain the view that a hybridization mechanism can make
full use of the advantages of some NIOAs to overcome the disadvantages of the other

Entropy 2021, 23, 874 17 of 40

NIOAs. Following are some examples of this view: DE has the abilities of strong global
exploration and rapid convergence; PSO is easy to fall into the local optimum; ABC has
slow convergence speed and is poor to balance the exploration and exploitation; BA and
FA have a good performance on low dimensional problems, but are not good at solving
high dimensional and nonlinear problems; GWO has a poor diversity of population and
slow convergence, etc. Although many excellent hybrid NIOAs have been proposed
(as mentioned above), what we have to admit is a confusing trend and route of NIOAs
enhancement: in order to improve some NIOAs, the “proposers” always claimed that the
selected NIOAs have a series of shortcomings, such as being easy to fall into local optimum,
slow convergence and not being good at solving high-dimensional problems, and the
proposed hybrid methods can improve the performance of the selected NIOAs. It is very
likely that, without being fully aware of the merits and demerits of the common NIOAs, a
so-called “novel” algorithm is only a mixture of NIOAs. The performance of such hybrid
NIOAs, including convergence speed, ability to solve high-dimensional problems and
algorithm accuracy, need to be verified with comprehensive experiments. Section 4 will
give a systematic comparison and analysis of the performance of the 11 common NIOAs.

3.3. Differences

From our observation, there are three important aspects that influence the perfor-
mance of NIOAs, including the method of parameter tuning, the learning strategy and
the topological structure of the population. As the original 11 NIOAs adopt empirical
parameters, we will not discuss the problem of parameter-tuning in this paper. However,
we will address the sensitivity of the algorithms to their parameters setting in Section 4.2.
In this section, we discuss the differences in learning strategies, the topology structures,
the time complexities and the interactions of algorithmic components for the 11 NIOAs.

1. Learning strategies
Each NIOA has its own learning strategy. GA exchanges information among genes

through selection, crossover and mutation operators, while IA updates antibodies according
to the conception of activity degree. In GA, the selection operation is executed by the
probability ϑ1, while in IA, the selection operation is executed by the roulette method to
choose antibodies with large activity degree; the main differences between the GA and
DE algorithms were described in Section 2.2.8. In PSO, xi(t) is updated by its local best
optimum pi(t) and the global best optimum pg(t) of the whole population (see Equation
(1)), and in BA, the updating methods of positions and velocities have some similarities
to those of PSO. To some extent, BA can be regarded as a combination of the global
optimum pg(t) in PSO with an extensive local search method, which is described by the
sound intensity Ai(t) and the pulse emissivity ri(t) (see Equations (7)–(9)); in FA, if the
attraction factor γ (see Equation (17)) tends to zero, it is a special case of PSO; according
to Equations (1) and (29), GSA also can be regarded as a variant of PSO. The difference
among them is that velocity updating of the former is influenced by local optimum pi(t)
and global optimum pg(t), while those of the latter is affected by all the other individuals
(named as the total force); in CS, each cuckoo randomly updates its solution by Lévy
flight (see Equation (18)), and new solutions are generated to replace the worst solutions
through learning from other individuals. The harmony in HS has interactions with the
best individuals (solutions in harmony memory) according to certain probability, which
updates solution based on memory considerations, pitch adjustments and randomization
(see Equations (43) and (44)); compared to the other nine NIOAs, GWO and ABC have
hierarchical evolution mechanisms and the roles can be changed dynamically according
to the quality of individuals’ solutions. Wolves in GWO learn from the current top three
best wolves α, β and δ (see Equation (42)), and onlookers in ABC learn from the selected
employed foragers that found food sources (see Equation (4)).

Entropy 2021, 23, 874 18 of 40

2. Topological structures
According to the scope of interaction among individuals, the topologies of the 11

SOIAs can be roughly grouped into two categories: global neighborhood topology (GNT)
and local neighborhood topology (LNT). In this paper, we consider the neighborhood
topology in the period of each iteration of NIOAs, and thus we have the following obser-
vation and conclusions. GA is LNT, because it can only exchange information between
two genes in each iteration; DE is also LNT for a similar reason; ABC can be regarded as
LNT too because onlookers only follow certain employed foragers, and scouts generate
new solutions randomly and have no interaction with other bees; FA belongs to LNT be-
cause a firefly moves towards another firefly that has larger luminance; CS is LNT because
individuals either generate new solution independently (see Equation (18)) or produce
new solutions and exchange information with other individuals (see Equation (20)); similar
to GA, IA also is LNT because two antibodies exchange information through crossover
factors. As each particle updates its position using pg(t), PSO is regarded as GNT; BA is
classified as GNT for the same reason as PSO; GWO is also GNT because each wolf in
GWO updates its position following the best three wolves; GSA belongs to GNT because
each particle updates its position following the total force from all the other particles; HS
updates solutions from HM that stored the best harmony vectors of the whole population,
so it is GNT. The topologies of the 11 NIOAs are illustrated in Figure 4, where each circle
represents an individual; the solid line represents those two individuals have information
exchange in the current iteration and the dotted line indicates that two individuals maybe
exchange information in the sense of probability during the whole evolution process.

Entropy 2021, 23, x FOR PEER REVIEW 19 of 39

(see Equation (18)), and new solutions are generated to replace the worst solutions
through learning from other individuals. The harmony in HS has interactions with the
best individuals (solutions in harmony memory) according to certain probability, which
updates solution based on memory considerations, pitch adjustments and randomization
(see Equations (43) and (44)); compared to the other nine NIOAs, GWO and ABC have
hierarchical evolution mechanisms and the roles can be changed dynamically according
to the quality of individuals’ solutions. Wolves in GWO learn from the current top three
best wolves 𝛼, 𝛽 and 𝛿 (see Equation (42)), and onlookers in ABC learn from the selected
employed foragers that found food sources (see Equation (4)).

2. Topological structures
According to the scope of interaction among individuals, the topologies of the 11

SOIAs can be roughly grouped into two categories: global neighborhood topology (GNT)
and local neighborhood topology (LNT). In this paper, we consider the neighborhood to-
pology in the period of each iteration of NIOAs, and thus we have the following observa-
tion and conclusions. GA is LNT, because it can only exchange information between two
genes in each iteration; DE is also LNT for a similar reason; ABC can be regarded as LNT
too because onlookers only follow certain employed foragers, and scouts generate new
solutions randomly and have no interaction with other bees; FA belongs to LNT because
a firefly moves towards another firefly that has larger luminance; CS is LNT because in-
dividuals either generate new solution independently (see Equation (18)) or produce new
solutions and exchange information with other individuals (see Equation (20)); similar to
GA, IA also is LNT because two antibodies exchange information through crossover fac-
tors. As each particle updates its position using 𝑝௚(𝑡), PSO is regarded as GNT; BA is
classified as GNT for the same reason as PSO; GWO is also GNT because each wolf in
GWO updates its position following the best three wolves; GSA belongs to GNT because
each particle updates its position following the total force from all the other particles; HS
updates solutions from HM that stored the best harmony vectors of the whole population,
so it is GNT. The topologies of the 11 NIOAs are illustrated in Figure 4, where each circle
represents an individual; the solid line represents those two individuals have information
exchange in the current iteration and the dotted line indicates that two individuals maybe
exchange information in the sense of probability during the whole evolution process.

(a) Topology of

PSO, BA, GWO, GSA, HS
(b) Topology of GA, DE,

ABC, FA, CS, IA

Figure 4. Topologies of 11 compared NIOAs.

GNT and LNT have their own advantages and disadvantages. Generally speaking,
all individuals in GNT are connected to each other and attracted are to the global best
solution of the whole population; its merits include rapid convergence and strong exploi-
tation ability, while it is more likely to be confined at a local optimum; on the contrary,
each individual in LNT only connects to several other individuals in its neighborhood and
is attracted by the best position of the neighborhoods. LNT can make individuals search
diverse regions of problem space and has a strong exploration ability, while it may have
a slow convergence speed.

3. The interactions of algorithmic components
It is necessary to consider insights into the contribution of each component in NIOAs.

The interactions of algorithmic components can reflect the core optimization power of the
overall method [136]. According to the learning strategies and topological structures of

Figure 4. Topologies of 11 compared NIOAs.

GNT and LNT have their own advantages and disadvantages. Generally speaking, all
individuals in GNT are connected to each other and attracted are to the global best solution
of the whole population; its merits include rapid convergence and strong exploitation
ability, while it is more likely to be confined at a local optimum; on the contrary, each
individual in LNT only connects to several other individuals in its neighborhood and is
attracted by the best position of the neighborhoods. LNT can make individuals search
diverse regions of problem space and has a strong exploration ability, while it may have a
slow convergence speed.

3. The interactions of algorithmic components
It is necessary to consider insights into the contribution of each component in NIOAs.

The interactions of algorithmic components can reflect the core optimization power of
the overall method [136]. According to the learning strategies and topological structures
of NIOAs, the interactions of algorithmic components can be described. GA, IA and
DE exchange information through three components: selection, crossover and mutation
operators. For GA, selection and crossover are two main components, and information
exchange happens between two genes in each iteration; mutation is executed in a low
probability which can increase the diversity of the population. Owing to the local topology,
GA has slow convergence. For IA, it uses affinity to guide the searching process. For DE,
the mutation is the main operation and generates new solutions by perturbing the different
vectors of several individuals. PSO updates the velocity of each particle using its historical

Entropy 2021, 23, 874 19 of 40

and globally optimal solutions; the topology is a full connection, and information exchange
is very fast, and thus it is easy to fall into local optimum. ABC has three components:
employed foragers, scouts and onlookers. Employed foragers learn from other randomly
selected individuals to update their velocity, onlooker finds solutions through sharing
information with a specific employed forager and scouts can generate new solutions
randomly. The topological structure of ABC is LNT, and the roles of bees can be changed
dynamically. BA has a similar mechanism of exchanging information to those of PSO; it
updates the velocity using the global optimum; its topology structure is GNT. FA updates
its position by exchanging information with another firefly; it is regarded as a special case
of PSO, but it belongs to LNT. The particle in GSA updates its velocity according to the
acceleration, and the latter uses the total force from all the particles; thus, GSA belongs
to GNT. GWO has four types of grey wolves, including alpha (α), beta (β), delta (δ) and
omega (ω). GWO saves the top three best solutions (α, β, δ) obtained so far and obliges the
other wolves to update their positions according to the position of the best three wolves.
HS exchanges information with the best solutions (stored in harmony memory) according
to a certain probability; it belongs to GNT.

4. Time complexities analysis
The time complexity of the 11 NIOAs is described in Table 3 below, where D, M and

N represent the number of the dimensions of objective functions, M is the number of the
individuals of each NIOA and N is the total iterative times, respectively, and has been
defined in Table 1. In order to calculate the time complexity of individual operations
in the NIOAs, we divide the NIOAs operations into various components and assign
corresponding computational costs. Specifically, we use Tinit to denote the computational
cost of initialization, Teval is the evaluation of a single solution and Titer is the computational
cost of one iteration of the main loop of the NIOAs, which is determined by the cost of
the operations of updating solutions (Tupd), evaluating solutions (Te) and the calculating
statistics (Tstats). For the 11 compared NIOAs, the computational cost of Tinit, Teval, Te
and Tstats have the same values, which are calculated as follows: Tinit = D·M, Teval = D,
Te = M·Teval, Tstats = M. Thus, the computational cost of one iteration is reckoned as
Titer = Tupd + Te + Tstats and Tupd varies with the different NIOAs, the total computational
cost of an NIOA (for example, PSO) is defined as TPSO = Tinit + Titer·T. The time complexity
of the 11 compared NIOAs is described in Table 3. From Table 3, we can see that the time
complexity of PSO, GA, ABC, BA, CS, DE, GWO and HS is O(D·M·N); that of GSA and IA
is O((D+M)·M·N) and FA O(D·M2·N). The actual running time given by the benchmark
functions (discussed in Section 4.2.3) agrees with the above estimates.

Table 3. The time complexities of 11 compared NIOAs.

NIOAs Time Complexity Comments

PSO Tupd = Tvec + Tpos = D·M + D·M = 2·D·M;
O(TPSO) = O(D·M + (3·D·M + M)·N) ≈ O(D·M·N)

Tupd denotes the cost of updating velocity (Tvec) and
position (Tpos)

GA Tupd = Tcross + Tmut = D·M + D·M = 2·D·M;
O(TGA) = O(D·M + (2·M·D + M)·N) ≈ O(D·M·N)

Tupd denotes the cost of crossover (Tcross) and
mutation (Tmut) operations

ABC Tupd = Temp + Tsct + Tonk = D·M/2 + D·M/2 + M = D·M + M;
O(TABC) =O(D·M + (2·M·D + 2M)·N) ≈ O(D·M·N)

Tupd denotes the cost of updating the positions of
employed foragers (Temp), scouts (Tsct) and

onlookers (Tonk)

BA Tupd = Tfreq + Tvec + Tpos = D·M+ D·M+ D·M = 3·D·M;
O(TBA) = O(D·M + (4·M·D + M)·N) ≈ O(D·M·N)

Tupd denotes the cost of updating the frequency
(Tfreq), velocity (Tvec) and positions (Tpos)

IA
Tupd = Tden + Tact + Tcross+ Tmut =M·M + M+ D·M + D·M =

M(M + 1) + 2 D·M; O(TIA) = O(D·M +(M·(M +4) + 3·M·D)·N) ≈
O(D·M·N + M·M·N) =O((D + M)·M·N)

Tupd is the cost of updating the density (Tden),
activity (Tact), crossover (Tcross) and mutation (Tmut)

operations

FA
Tupd = M·M·D;

O(TFA) = O(D·M +(M·M·D + M·D + M)·N) ≈ O(D·M2·N)
Tupd is the cost of updating the positions of fireflies

Entropy 2021, 23, 874 20 of 40

Table 3. Cont.

NIOAs Time Complexity Comments

CS Tupd = 2·M·D;
O(TCS) = O(D·M + (3·M·D + M)·N) ≈ O(D·M·N) Tupd is the cost of updating the host nests of cuckoos

DE Tupd = M·D+ M·D+ M;
O(TDE) = O(D·M +(4M·D + 2·M)·N) ≈ O(D·M·N)

Tupd is the cost of crossover mutation and selection
operations

GSA
Tupd = Tgrav + Tvec + Tpos = M·M+ M·D+ M·D;

O(TGSA) = O(D·M + (M·M + 3·M·D + M)·N) ≈ O(D·M·N +
M·M·N) = O((D + M)·M·N)

Tupd is the cost of updating gravitational
acceleration (Tgrav), velocity (Tvec) and position

(Tpos)

GWO Tupd = M·D;
O(TGWO) = O(D·M + (2M·D + M)·N) ≈ O(D·M·N)

Tupd denotes the cost of updating the positions of
wolves

HS Tupd = M·D;
O(THS) = O(D·M + (2M·D + M)·N) ≈ O(D·M·N) Tupd is the cost of updating harmony vectors

4. Performance Comparison and Analysis for the 11 NIOAs
4.1. The Description of BBOB Test Functions

In order to evaluate the performances of the 11 NIOAs, 30 Black-Box Optimization
Benchmarking (BBOB) functions are adopted as fitness functions, which were proposed
in the 2017 IEEE Congress on Evolutionary Computation. The optimum values of the
30 BBOB functions (F1–F30) are from 100 to 3000 with the step of 100; they include unimodal
functions, multimodal functions, hybrid functions and composition functions. For the sake
of fairness, each algorithm is run 20 times independently, and the individual quantity of
every algorithm is 50; all the BBOB functions are tested in low dimension (D = 10) and high
dimension (D = 50) and the iterative times are 1500 and 15,000 when D equals 10 and 50,
respectively. In order to analyze the sensitivity of the compared NIOAs to their parameter
settings, we apply two groups of parameters for each of the 11 NIOAs. The first group
of parameters is consistent with the parameters of the 11 original algorithms. The second
group of parameters is different from the first group and is randomly selected according to
the principles of the 11 NIOAs. For example, the mutation probability ϑ3 in GA should
generally not be too large, and its value in the second group is set to 0.25. The parameters
of the compared NIOAs are described in Table 4. For GA and IA in this work, we adopt the
method of roulette wheel selection for the selection operators, the multi-point crossover
and one-point crossover for the crossover operators and the basic mutation method for the
mutation operators that chooses one or more genes to randomly change.

Table 4. The parameters of the 11 NIOAs.

Algorithms Parameters I Parameters II

GA ϑ1 = 1, ϑ2 = 0.8, ϑ3 = 0.2 ϑ1 = 1, ϑ2 = 0.75, ϑ3 = 0.25
PSO c1 = 2, c2 = 2 c1 = 1.5, c2 = 1.5
ABC F = M/2, Limit = 20 F = M/3, Limit = 30

BA α = 0.9, γ = 0.9 Amax = 100, Amin = 1, fmax = 100, fmin = 1 α = 0.8, γ = 0.8 Amax = 150, Amin = 1, fmax = 150,
fmin = 1

IA Pc = 0.8, Pm = 0.2 Pc = 0.75, Pm = 0.25
FA γ = 0.6, step = 0.4, β0 = 1 γ = 0.5, step = 0.5, β0 = 1.1
CS α = 1, Pa = 0.25 α = 1.1, Pa = 0.15
DE F = 0.5, CR = 0.1 F = 0.6, CR = 0.2

GSA G0 = 100, α = 20 G0 = 90, α = 15
GWO None None

HS HMCR = 0.995, PAR = 0.4, BW = 1 HMCR = 0.85, PAR = 0.5, BW = 0.9

Entropy 2021, 23, 874 21 of 40

4.2. Performance Comparison and Analysis on Benchmark Functions
4.2.1. The Comparison and Analysis on the Accuracy, Stability and Parameter Sensitivity

From the best fitness values (functions), we derive four kinds of criterion values,
i.e., the best, the average, the worst and the standard deviation, to qualitatively indicate
the effect of each algorithm for a given BBOB function under a certain dimension with a
given group of parameters after 20 times of repeated experiments. They are denoted to be
BEST, AVERAGE, WORST and STD. Tables S2–S7 of Supplementary Material B show the
experimental results for the four kinds of criterion values with all the 30 BBOB functions
under the first group of parameters when it is low dimension (=10). Tables S8–S13 of
Supplementary Material C show the experiment results when it is high dimension (=50).
The values in bold represent the algorithm of the 11 NIOAs with the best result.

Similarly, the experiment results for the four kinds of criterion values on the second
group of parameters are presented in Tables S14–S19 of Supplementary Material D for
the low dimension (=10) and Tables S20–S25 of Supplementary Material E for the high
dimension (=50). Again, the values in bold represent the algorithm with the best result.

Based on the above experimental results, we count the number of times that these
11 NIOAs achieved a “good” result on the 30 functions, as described in Table S26 of
Supplementary Material J. In order to objectively analyze the performance of the NIOAs,
if the result of the BEST criterion is within 20% on the optimal solution, it is regarded as
the “good” result; for the STD criterion, values are less than 50 of F1–F10, are less than
150 of F11–f20 and are less than 300 of F21–F30 are considered as “good” results. In order
to compare the performance of 11 NIOAs, the results of Tables S2–S13 of Supplementary
Materials B and C are briefed in Table 5, the results of Tables S14–S25 of Supplementary
Materials D and E are briefed in Table 6. As described in Tables 5 and 6, the bold number is
the number of wins for the NIOAs on a specific criterion, and the corresponding winning
functions are shown in the brackets followed. In addition, as described in Tables S27–S30
of Supplementary Material K, we also give the mean error (AVERAGE ± STD) values of
the 11 NIOAs on the 30 BBOB functions, where the values in bold represent the algorithm
having the best result.

In this section, we not only compare the accuracy and stability of different NIOAs, but
also analyze the sensitivity of each selected NIOA by setting two groups of parameters
for the compared NIOAs. It should be noted that it is impossible to find a super NIOA to
solve all optimization problems, and it is more meaningful to design a NIOA for a specific
problem. However, the experimental results may be helpful for researchers to understand
the learning strategy and topology of these NIOAs. In addition, two groups of parameters
are chosen to analyze the sensitivity of the 11 NIOAs to their parameters setting, which can
roughly reflect the robustness of the compared NIOAs.

1. Analysis of accuracy and stability
We compare the 11 algorithms in terms of accuracy and stability under the two groups

of parameters. The rankings of accuracy and stability of the compared NIOAs is roughly the
same. Based on the experimental results of Tables 5 and 6, and Table S121 of Supplementary
Material J and Tables S122–S125 of Supplementary Material K, the following observations
can be made:

(1) As described in Table S26, for the accuracy in low dimensional space, all the NIOAs
can obtain good results on at least half of the BBOB functions, while in high dimensional
space, the accuracy of all the NIOAs is much worse than that in the low dimensional space,
only GSA, DE and CS obtain relatively good results. For the stability in low dimensional
space, all the NIOAs can obtain good results on at least half of the BBOB functions, while
in high dimensional space, the stability of all the NIOAs is much worse; only CS, DE, ABC
and GSA obtain relatively good stability.

Entropy 2021, 23, 874 22 of 40

(2) As shown in Tables 5 and 6, DE and CS can receive better solutions and stability
compared to the other nine NIOAs for both groups of parameters. Especially, for the
BEST criterion on the two groups of parameters, DE achieves the best results among the
11 NIOAs. DE and CS are the most stable algorithms among the 11 NIOAs for the different
parameter settings. According to the mean error values of Tables S27–S30, DE and CS
can receive obvious better results in low dimensional space compared with the other nine
NIOAs, and in high dimensional space, CS, DE and GWO can obtain better mean error
values than the other eight NIOAs.

Table 5. The number of wins and corresponding functions of each criterion for 11 NIOAs on parameters I.

NIOAs
Criteria

WORST AVERGAE BEST STD

DE

D = 10 10 (F5, F6, F8, F9, F10,
F17, F20, F27, F29, F30)

10 (F5, F6, F8, F9, F10,
F17, F19, F20, F27, F30)

13 (F6, F9, F11, F14, F15,
F16,

F17, F18, F19, F20, F21,
F27, F30)

7 (F5, F6, F8, F9, F23,
F28, F30)

D = 50 9 (F4, F6, F8, F16, F20,
F25, F27, F28, F30)

8 (F6, F9, F11, F20,
F25, F27, F29, F30)

8 (F6, F9, F11, F20,
F22, F25, F27, F30)

7 (F4, F6, F21, F25, F27,
F28, F30)

CS

D = 10

17 (F2, F3, F4, F11, F12,
F13, F14, F15, F16,F18,
F19, F21, F23, F24, F25,

F26, F28)

16 (F2, F3, F4, F11, F12,
F13, F14, F15,

F16, F18, F21, F22, F24,
F25, F26, F28)

7 (F2, F3, F4, F12, F13,
F25, F26)

17 (F2, F3, F4, F10, F11,
F12, F13, F14,

F15, F16, F17, F18, F19,
F20, F21, F27, F29)

D = 50 8 (F3, F12, F14, F15, F18,
F19, F24, F29)

10 (F1, F3, F4, F12, F13,
F14, F15, F18, F19, F28)

8 (F3, F4, F12, F13, F14,
F18, F19, F28)

9 (F3, F10, F14, F15, F16,
F18, F19, F22, F29)

HS
D = 10 - - - -

D = 50 2 (F9, F23) 2 (F8, F23) 5 (F5, F8, F21, F23, F29) 3 (F9, F23, F24)

GSA
D = 10 4 (F1, F7, F9, F22) 3 (F1, F7, F9) 3 (F1, F7, F9) 5 (F1, F7, F9, F22, F25)

D = 50 6 (F1, F2, F7, F11, F13,
F26) 3 (F2, F7, F26) 4 (F1, F2, F7, F26) 9 (F1, F2, F5, F7, F8, F11,

F12, F13, F26)

GWO
D = 10 - 1 (F29) 3 (F5, F8, F22) 2 (F25, F26)

D = 50 3 (F5, F17, F21) 7 (F5, F10, F16, F17, F21,
F22, F24) 3 (F16, F17, F24) -

ABC
D = 10 - 1 (F23) 5 (F10, F23, F24, F28,

F29) -

D = 50 2 (F10, F22) - - 1 (F17)

PSO
D = 10 - - 1 (F6) -

D = 50 - - 2 (F10, F15) -

FA
D = 10 - - - -

D = 50 - - - 1 (F20)

BA - - - -

GA - - - -

IA - - - -

Entropy 2021, 23, 874 23 of 40

Table 6. The number of wins and corresponding functions of each criterion for 11 NIOAs on parameters II.

NIOAs
Criteria

WORST AVERGAE BEST STD

DE

D = 10
11 (F5, F6, F8, F10, F14,
F15, F17, F18, F19, F20,

F30)

12 (F5, F6, F8, F15, F17,
F18, F19, F20, F23, F27,

F29, F30)

14 (F5, F6, F8, F9, F14,
F15, F16, F17, F18, F19,

F20, F23, F27, F30)

9 (F5, F6, F8, F15, F18,
F19, F25, F28, F30)

D = 50 7 (F4, F6, F20, F25, F26,
F27, F28) 4 (F6, F9,F25, F27) 5 (F6, F9, F25, F27, F30) 5 (F4, F6, F25, F27, F28)

CS

D = 10

16 (F1, F2, F3, F4, F11,
F12, F13, F16,

F21, F23, F24, F25, F26,
F28, F29)

14 (F2, F3, F4, F11, F12,
F13, F14,F16, F21, F22,

F24, F25, F26, F28)

11 (F2, F3, F4, F11, F12,
F13, F21, F22, F25, F26,

F28)

15 (F1, F2, F3, F4, F11,
F12, F13, F14, F16, F17,
F20, F21, F23, F27, F29)

D = 50
12 (F1, F2, F11, F12, F13,
F14, F15, F18, F19, F24,

F29, F30)

13 (F1, F2, F4, F11, F12,
F13, F14, F15, F18, F19,

F28, F29, F30)

11 (F2, F4, F11, F12, F13,
F14,F15, F18, F19, F28,

F29)

12 (F1, F2, F11, F12, F13,
F14, F15, F17, F18, F19,

F29, F30)

HS

D = 10 - - - 1 (F24)

D = 50 - - - 7 (F5, F8, F16, F21, F23,
F24, F26)

GSA
D = 10 3 (F7, F9, F22) 3 (F1, F7, F9) 3 (F1, F7, F9) 3 (F7, F9, F22)

D = 50 2 (F7, F10) 3 (F7, F10, F26) 4 (F1, F7, F10, F26) -

GWO
D = 10 - 1 (F10) 2 (F10, F29) -

D = 50 7 (F5, F8, F16, F17, F21,
F22, F23)

9 (F5, F8, F16, F17, F20,
F21, F22, F23, F24)

8 (F5, F8, F16, F17, F20,
F21, F23, F24) -

ABC
D = 10 - - - 1 (F26)

D = 50 - - 1 (F22) -

PSO
D = 10 - - 1 (F24) -

D = 50 1 (F3) 1 (F3) 1 (F3) 3 (F3, F7)

FA
D = 10 - - - 1 (F10)

D = 50 - - - 2 (F20, F22)

GA
D = 10 - - - -

D = 50 1 (F9) - - 2 (F9, F10)

BA - - - -

IA - - - -

2. Analysis of the parameter sensitivity on the 11 NIOAs
Undoubtedly, the optimization results of all the compared NIOAs are sensitive to their

parameters settings, as described in Supplementary Materials B–E. In this work, in order
to analyze the degrees of sensitivity for the compared NIOAs, we think that an NIOA is
sensitive to its parameters setting if the difference of the two results on the same BBOB
function under two groups of parameters is greater than one order of magnitude (one
result value is 10 times greater than the other). The statistical results are shown in Table 7,
and if the experimental results of certain functions differ by two orders of magnitude, two
stars are marked on the corresponding function, etc. As described in Table 7, the following
observations can be made:

Entropy 2021, 23, 874 24 of 40

Table 7. The sensitivity comparison of each criterion for 11 NIOAs under two groups of parameters.

NIOAs
Criteria

WORST AVERGAE BEST STD

DE

D = 10 - - - -

D = 50 7 (F1 **, F2, F9, F12, F13
***, F15 **, F30 **)

8 (F1 **, F2, F7, F10, F12,
F13 **, F15, F30)

7 (F2, F3, F7, F8, F10,
F18, F22)

11 (F1 **, F2, F3, F4, F9,
F12, F13 **, F15, F18,

F22, F30 **)

CS
D = 10 - - - -

D = 50 2 (F1, F18) 1 (F18) 2 (F8, F12) 2 (F14, F29)

HS

D = 10 - - - -

D = 50 8 (F1 ***, F2, F4, F5, F9,
F12 **, F13, F30)

8 (F1 ***, F2 **, F4, F8,
F12 **, F13, F19, F30)

8 (F1 **, F2, F4, F8, F12 **,
F13, F19, F30)

10 (F1 ***, F2, F4, F9,
F12 **, F13, F15, F18,

F25, F30)

GSA
D = 10 - - - -

D = 50 6 (F1, F2, F9, F12 **, F13,
F14 **) 3 (F12 ***, F14, F22) 4 (F8, F14, F19, F22) 7 (F2 **, F9, F12 ***, F13,

F14 **, F18, F19)

GWO
D = 10 - - - -

D = 50 4 (F1, F9, F18, F19) 3 (F4, F7, F13) 3 (F1, F2, F19) 3 (F13, F19, F24)

ABC
D = 10 2 (F18, F30) 2 (F18, F30) 2 (F18, F30) 2 (F18, F30)

D = 50 6 (F1, F11, F12, F13, F18,
F19) 2 (F1, F15) 1 (F19) 4 (F12, F13, F14, F19)

PSO

D = 10
12 (F1 **, F2, F3, F7, F9,

F12 **, F13, F14, F15, F18,
F19, F30)

11 (F1 **, F2, F3, F9, F12,
F13, F14, F15, F18, F19,

F30)

8 (F1 **, F3, F9, F12, F13,
F14, F18, F30)

12 (F1 ***, F2 **, F3 **,
F7, F9, F12, F13, F14,
F15 **, F18, F19, F30)

D = 50

12 (F1 **, F2, F3 **, F4 **,
F11, F12, F13 **, F14 **,

F15 **, F18 **, F19 **,
F30)

14 (F1 **, F2 **, F3 **, F4
**, F11, F12 **, F13 **, F14

***, F15 **, F18, F19 **,
F26, F28, F30 **)

15 (F1 ***, F2 **, F3 **, F4
**, F9, F11, F12 **, F13 **,
F14 **, F15 **, F18 **, F19

**, F26, F28, F30)

12 (F1 **, F2 **, F3 **, F4
, F11 *, F12, F13 **,
F14 ***, F15 ***, F18 **,

F19 ***, F30 **)

FA
D = 10 - - - -

D = 50 4 (F2, F14, F17, F29) 4 (F12, F14, F18, F29) 4 (F12, F14, F15, F17) 4 (F1, F13, F14, F17)

BA
D = 10 - - - -

D = 50 3 (F2, F11, F19) 6 (F2, F3, F12, F14, F15,
F26) 2 (F3, F9) 6 (F2, F4, F11, F13, F19,

F28)

GA
D = 10 3 (F1, F18, F19) 1 (F1) 1 (F1) 2 (F1, F18)

D = 50 4 (F15, F19, F26, F30) 6 (F1, F14, F15, F18, F19,
F26)

5 (F1 **, F13, F15, F18,
F26) 4 (F1, F11, F15, F30)

IA
D = 10 - - - -

D = 50 - 1 (F14) - 2 (F1, F13)

(1) DE, CS, HS, GSA, GWO, FA, BA and IA are sensitive to their parameters setting
on high dimensional space and are relatively insensitive in low dimensional space, which
indicates that it should be careful to select the parameters of the above NIOAs when using
them in high dimensional problems. Specifically, DE and HS are the most sensitive to their
parameters setting on high dimensional space.

(2) ABC, PSO and GA are sensitive to their parameters setting both on high and low
dimensional spaces, and PSO is the most sensitive to their parameters setting.

According to the above observations, we draw the following preliminary conclusions:
(1) The NIOAs, which have explicit learning strategy of solution update, can acquire

better performance than the NIOAs with large randomness (for example, probability
method) to learn from other individuals. For example, In GA, the progeny individual

Entropy 2021, 23, 874 25 of 40

replaces the parent individual with a certain probability, while in DE, the individual is only
updated when the new individual is better than the old one; the cuckoos in CS update their
positions once the new solution generated by Lévy flights is better than the old one; while
the individual in BA can be updated by the better one under the probability constraints
rand2 < A, which means that it may not be updated by the better individual; IA executes
crossover and mutation operations through choosing antibodies with large activity degree,
but the computation of large activity has some uncertainties, for example, the design of
the threshold h1 in Equation (12) and h2 in Equation (13). It seems that the algorithms can
achieve better performance, which continuously and randomly generate new solutions
and firmly learn from excellent individuals.

(2) With the increase of dimensional number, all the NIOAs become more sensitive to
their parameters setting, which indicates that it is more difficult to choose a suitable set
of parameters for NIOAs on high dimensional problems, except for DE and CS, GSA and
GWO, which perform better in high dimensional space than the other seven NIOAs.

4.2.2. The Efficiency Comparison and Analysis

For the sake of error elimination, we compute the average value of each iteration
in 20 independent experiments and obtains the change curves of the global optimized
fitness under 1500 and 15,000 iterations on 30 functions for the low and high dimensions,
respectively. For the first group of parameters for compared NIOAs, when D equals 10,
the convergent curves of 11 NIOAs on 30 BB functions are described in Figures S1–S30 of
Supplementary Material F, and for the case of D =50, the corresponding curves are described
in Figures S31–S60 of Supplementary Material G. For the second group of parameters,
the corresponding convergent curves are described in Figure S61–S90 of Supplementary
Material H and in Figures S91–S120 of Supplementary Material I, respectively. Based on
these experimental results, the following observations can be made:

(1) FA and HS have the worst optimization efficiency for most of the 30 functions
both on the low and high dimensions, because they either evolve solutions through
adopting complete random strategies (see Equations (43) and (44)), for example, HS or
learn from other individuals in local topology and are perturbed by a random factor (see
Equation (17)), such as FA.

(2) With the increasing of iterative times, the curves of most compared NIOAs trend to
be stable, while those of ABC and DE are the oscillatory curves for most of the 30 functions
both on the low and high dimensions; the amplitude and frequency of oscillations of ABC
are greater than those of DE, and they are larger in high dimensions than low dimension
for the two algorithms, but from the whole iteration period, the optimization results of
ABC and DE are gradually improved.

(3) PSO, GSA and GWO have the fast convergent speed for most of the 30 functions
both on the low and high dimensions, because all of them adopt the explicit strategy of
learning from the global best solution; that is, the individuals in these NIOAs learn firmly
from the global optimum which leads to the rapid convergence.

4.2.3. The Comparison of Running Time

The running time of the 11 NIOAs on 30 BBOB functions are summarized in Table S31
of Supplementary Material L. Based on these data, the following observations can be made:

(1) DE and CS are the fastest algorithms on all the 30 functions for the dimension of
10 and 50, respectively. FA is the slowest algorithm both on the low and high dimensional
spaces; its running time on the 30 functions is 1~2 orders of magnitude higher than the
other 10 NIOAs. GSA has the second-worst running time for both dimensional spaces.
The slowest running time of FA and GSA echoes their time complexity given in Table 3 of
Section 3.3.

(2) PSO, GA, BAC, BA, GWO and HS are fast when D = 10, while in the high dimen-
sional space, their running time is obviously longer than the low dimensional space. Thus,

Entropy 2021, 23, 874 26 of 40

from the view of running time, the above algorithms are more suitable to low dimensional
problems, DE and CS are suitable to the problems on both high and low dimensional spaces.

(3) For D = 10, the running time of FA is 20 times that of DE for almost all the functions;
when D = 50, FA is 20 times slower than CS (the maximum is 35) for all the functions. Thus,
the difference in running time for the NIOAs is very large, and hence it is important to select
fast NIOAs for the optimization problems with the strict requirement of running time.

4.3. Statistical Tests for Algorithm Comparison

In this study, we consider two statistical tests: the Friedman test [137] and Nemenyi
test [137]. A Friedman test is constructed to analyze the performance of the compared
NIOAs. Table 8 provides the Friedman test statistics FF and the corresponding critical
value in terms of each evaluation criterion. As shown in Table 8, the null hypothesis (that
all of the compared algorithms will perform equivalently) was clearly rejected for each
evaluation criterion at a significance level of α = 0.05 for the experimental results in both
10 and 50 dimensional spaces. Consequently, we proceed to conduction of a post hoc
test [137] in order to analyze the relative performance among the compared NIOAs.

Table 8. Summary of the Friedman Statistics FF (k = 11, N = 30) and the critical value in terms of each evaluation criteria
(k: #comparing algorithms; N: #data sets).

Dimensions NIOAs Parameters Criteria FF Critical Value (α = 0.05)

10-dimensional space

Parameters I

WORST 89.9707

1.8634

BEST 79.0949
AVERAGE 94.9530

STD 34.6416

Parameters II

WORST 80.1552
BEST 78.3713

AVERAGE 95.4905
STD 27.9553

50-dimensional space

Parameters I

WORST 68.9997
BEST 69.7277

AVERAGE 71.4619
STD 32.7366

Parameters II

WORST 61.3683
BEST 92.1188

AVERAGE 75.6435
STD 14.9259

The Nemenyi test [137] is used to test whether each of the NIOAs performed com-
petitively against the other compared NIOAs in both the 10- and 50-dimensional spaces.
In the test, two NIOAs are considered to have a significant difference in performance if
their corresponding average ranks differ at least by the critical difference value given by

CD = qα

√
k(k+1)

6N . For example, qα is equal to 3.219 at the significance level α = 0.05, and
thus CD takes the value of 2.7563 (k = 11, N = 30). Figures 5 and 6 show the CD diagrams
for each of the four evaluation criteria about the experimental results of the 10-dimensional
space under the two groups of parameters. As CS obtains the best average rank on the
30 functions, CS is taken as the control algorithm. If any compared NIOA whose average
rank is within one CD to that of CS, it is connected to CS with a red line, as described
in Figures 5 and 6. The algorithms that are unconnected to CS are considered to have a
significantly different performance between them. In Figure 5a WORST, for example, the
average rank for CS was 1.6333, and the critical value would be 4.3896 by adding CD. Since
GSA, BA, GA, HS, PSO, FA and IA obtained 5.6333, 5.8333, 6.9, 7.2667, 8.7, 9.2 and 10.5667
for their respective average rankings, they were significantly worse compared with CS.
From Figures 5 and 6, we can see that CS and DE obtained the best average ranks on all
four criteria, followed by ABC and GWO. CS and DE have obvious better performance

Entropy 2021, 23, 874 27 of 40

than the other NIOAs. In other words, CS and DE obtained the best solutions and the best
stability in low dimensional space.

Entropy 2021, 23, x FOR PEER REVIEW 28 of 39

with CS. From Figures 5 and 6, we can see that CS and DE obtained the best average ranks
on all four criteria, followed by ABC and GWO. CS and DE have obvious better perfor-
mance than the other NIOAs. In other words, CS and DE obtained the best solutions and
the best stability in low dimensional space.

Figure 5. Comparison of DE (control algorithm) against other compared algorithms using the Ne-
menyi test for the experimental results in 10-dimensional space under parameters I.

Figure 5. Comparison of DE (control algorithm) against other compared algorithms using the
Nemenyi test for the experimental results in 10-dimensional space under parameters I.

Entropy 2021, 23, 874 28 of 40

Entropy 2021, 23, x FOR PEER REVIEW 28 of 39

with CS. From Figures 5 and 6, we can see that CS and DE obtained the best average ranks
on all four criteria, followed by ABC and GWO. CS and DE have obvious better perfor-
mance than the other NIOAs. In other words, CS and DE obtained the best solutions and
the best stability in low dimensional space.

Figure 5. Comparison of DE (control algorithm) against other compared algorithms using the Ne-
menyi test for the experimental results in 10-dimensional space under parameters I.

Entropy 2021, 23, x FOR PEER REVIEW 29 of 39

Figure 6. Comparison of DE (control algorithm) against other compared algorithms using the Ne-
menyi test for the experimental results in 10-dimensional space under parameters II.

Figure 7 shows the experimental results of the CD diagrams for the four kinds of
evaluation criteria with the 50-dimensional space under the first group of parameters, and
Figure 8 shows it under the second group of parameters. CS and DE still perform well on
the high-dimensional space. Especially, under the first group of parameters, DE obtains
the best average rank on the WORST, BEST and AVERAGE criteria, ranked the second-
best average rank on the STD criterion, whereas CS ranked the first best average rank on
the STD criterion. For the second group of parameters, CS ranked the first best average
rank on four criteria, while DE ranked the second on the WORST and STD criteria.

Figure 7. Comparison of DE (control algorithm) against other compared algorithms using the Ne-
menyi test for the experimental results in 50-dimensional space under parameters I.

Figure 6. Comparison of DE (control algorithm) against other compared algorithms using the
Nemenyi test for the experimental results in 10-dimensional space under parameters II.

Figure 7 shows the experimental results of the CD diagrams for the four kinds of
evaluation criteria with the 50-dimensional space under the first group of parameters, and
Figure 8 shows it under the second group of parameters. CS and DE still perform well on
the high-dimensional space. Especially, under the first group of parameters, DE obtains the
best average rank on the WORST, BEST and AVERAGE criteria, ranked the second-best
average rank on the STD criterion, whereas CS ranked the first best average rank on the
STD criterion. For the second group of parameters, CS ranked the first best average rank
on four criteria, while DE ranked the second on the WORST and STD criteria.

Entropy 2021, 23, 874 29 of 40

Entropy 2021, 23, x FOR PEER REVIEW 29 of 39

Figure 6. Comparison of DE (control algorithm) against other compared algorithms using the Ne-
menyi test for the experimental results in 10-dimensional space under parameters II.

Figure 7 shows the experimental results of the CD diagrams for the four kinds of
evaluation criteria with the 50-dimensional space under the first group of parameters, and
Figure 8 shows it under the second group of parameters. CS and DE still perform well on
the high-dimensional space. Especially, under the first group of parameters, DE obtains
the best average rank on the WORST, BEST and AVERAGE criteria, ranked the second-
best average rank on the STD criterion, whereas CS ranked the first best average rank on
the STD criterion. For the second group of parameters, CS ranked the first best average
rank on four criteria, while DE ranked the second on the WORST and STD criteria.

Figure 7. Comparison of DE (control algorithm) against other compared algorithms using the Ne-
menyi test for the experimental results in 50-dimensional space under parameters I.

Figure 7. Comparison of DE (control algorithm) against other compared algorithms using the
Nemenyi test for the experimental results in 50-dimensional space under parameters I.

Entropy 2021, 23, 874 30 of 40

Entropy 2021, 23, x FOR PEER REVIEW 30 of 39

Figure 8. Comparison of DE (control algorithm) against other compared algorithms using the Ne-
menyi test for the experimental results in 50-dimensional space under parameters II.

4.4. Performance Comparison on Engineering Optimization Problem
In order to further compare the performance of the 11 NIOAs, we apply them to solve

the constrained engineering optimization problem, for example, Tension/Compression
Spring Design. A spring is a kind of general mechanical part, which can produce a large
elastic deformation under load. The weight of the spring (such as a valve spring of an
internal combustion engine cylinder and spring of various buffers) has a great influence
on the normal operation of the relevant mechanical equipment. The design, as shown in
Figure 9, aims to minimize the weight of a tension/compression spring [138]. In this de-
sign, the constraints include the minimum deflection, shear stress, surge frequency and
the limit of outer diameter.

Figure 9. The design of tension/compression spring.

Figure 8. Comparison of DE (control algorithm) against other compared algorithms using the
Nemenyi test for the experimental results in 50-dimensional space under parameters II.

4.4. Performance Comparison on Engineering Optimization Problem

In order to further compare the performance of the 11 NIOAs, we apply them to solve
the constrained engineering optimization problem, for example, Tension/Compression
Spring Design. A spring is a kind of general mechanical part, which can produce a large
elastic deformation under load. The weight of the spring (such as a valve spring of an
internal combustion engine cylinder and spring of various buffers) has a great influence
on the normal operation of the relevant mechanical equipment. The design, as shown
in Figure 9, aims to minimize the weight of a tension/compression spring [138]. In this
design, the constraints include the minimum deflection, shear stress, surge frequency and
the limit of outer diameter.

Entropy 2021, 23, 874 31 of 40

Entropy 2021, 23, x FOR PEER REVIEW 30 of 39

Figure 8. Comparison of DE (control algorithm) against other compared algorithms using the Ne-
menyi test for the experimental results in 50-dimensional space under parameters II.

4.4. Performance Comparison on Engineering Optimization Problem
In order to further compare the performance of the 11 NIOAs, we apply them to solve

the constrained engineering optimization problem, for example, Tension/Compression
Spring Design. A spring is a kind of general mechanical part, which can produce a large
elastic deformation under load. The weight of the spring (such as a valve spring of an
internal combustion engine cylinder and spring of various buffers) has a great influence
on the normal operation of the relevant mechanical equipment. The design, as shown in
Figure 9, aims to minimize the weight of a tension/compression spring [138]. In this de-
sign, the constraints include the minimum deflection, shear stress, surge frequency and
the limit of outer diameter.

Figure 9. The design of tension/compression spring. Figure 9. The design of tension/compression spring.

There are three designed variables: the average coil diameter x1, the wire diameter
x2 and the number of the active coils x3, which together define the following complex
constraints:

minF(X) = (x3 + 2)x2x2
1

s.t. g1(X) = 1− x3
2x3

71,785x3
2
≤ 0,

g2(X) =
4x2

2−x1x2

12,566(x2x3
1−x4

1)
+ 1

5108x2
1
− 1 ≤ 0,

g3(X) = 1− 140.45x1
x2

2x3
≤ 0,

g4(X) = x1+x2
1.5 − 1 ≤ 0,

where 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.

(46)

Not only the objective function but also the constraint conditions should be considered
in solving such constrained optimization problems. The Penalty function method is
one of the most commonly used constraint processing techniques, which transforms the
constrained optimization problem into an unconstrained optimization problem according
to the Penalty function to the original objective function. In this study, we adopt the
dynamic Penalty function [139], defined as follows:

F(X) = f (X) + (C ∗ t)α
m
∑

i=1
Gβ

i (X)

Gi(X) = max(0, gi(X))
(47)

Here, t is the current iterative times, C, α, β are three parameters and in general
C = 1, α = 1, β = 2. We run each compared NIOA 20 times independently, and the
iterative number of times is 1000. Table 9 gives the experimental results of the 11 compared
NIOAs on the spring design problem. We can observe that all the 11 NIOAs have very close
BEST values (between 0.012 and 0.013). The CS algorithm ranks first for all the four kinds
of qualitative criteria: WORST, AVERAGE, BEST and STD. For the WORST criterion, CS,
FA, DE, GSA and GWO achieve good results. The results of the engineering optimization
problem indicate that all the 11 NIOAs obtain good results, and CS, FA, DE, GSA and GWO
are better and more stable than the other six NIOAs.

Entropy 2021, 23, 874 32 of 40

Table 9. Experimental results of 11 NIOAs on spring design problem.

Algorithm WORST AVERAGE BEST STD

GA 0.029080 0.016709 0.012691 0.004163
PSO 0.030457 0.015028 0.012746 0.005420
ABC 0.016446 0.014202 0.012827 0.001062
BA 0.044217 0.023193 0.013194 0.011202
IA 0.031477 0.021735 0.013134 0.006702
FA 0.012880 0.012733 0.012718 3.48 × 10−5

CS 0.012670 0.012666 0.012665 1.27 × 10−6

DE 0.013397 0.013007 0.012755 0.000201
GSA 0.013073 0.012953 0.012740 9.06 × 10−5

GWO 0.012821 0.012715 0.012672 3.00 × 10−5

HS 0.032620 0.020375 0.012877 0.006328

5. Challenges and Future Directions

Indeed, how to improve the performance of NIOAs is a very complex problem, which
is influenced comprehensively by the methods of parameter tuning, topology structure
and learning strategy. In this study, we draw some preliminary conclusions in order to
provide a referencing framework for the selection and improvement of NIOAs. In the past
30 years, a large number of meta-heuristic algorithms (more than 120 in our statistics) and
their variants have been proposed in order to provide efficient and effective solutions to
optimization problems in the field of AI. Although great progress has been made on the
NIOAs, which have been widely and successfully applied to various application fields,
challenging problems still exist, mainly reflected in the following four aspects.

1. The first one is the lack of sufficient research in fundamental theories and tools of
NIOAs. From our observation, the challenges of the fundamental researches on NIOAs
include the following four points.

(1) The biological or natural mechanisms imitated by the NIOAs are not yet fully clear.
Most of the NIOAs are proposed by the experts of psychology or computer science and
engineering, and close collaboration with biologists is extremely important in order to
deeply understand and abstract such mechanisms and functions so that NIOAs can be
reasonably and effectively integrated into nature, biology and the real environment.

(2) It is also necessary to lay a solid foundation of mathematical theories to support
NIOAs. Such examples include a rigorous time complexity analysis and convergence proof,
a deep analysis of topological structures of various NIOAs, a suitable and comprehensive
theoretical explanation to balance the contradiction between easily falling into local op-
timum and slow convergence speed, and an in-depth analytic study of the methods of
automatic parameters tuning in order to solve the parameter-dependence problem. Specif-
ically, while working on classic fundamental works [140–142] with some achievements
in time complexity analysis and convergence proof, the researchers give a list of future
research directions, which we brief as follows: for topology analysis, it is indicated that
the local neighborhood topology for some specific algorithm is more suitable for com-
plex problems [143], and the investigation into the PSO paradigm finds that the effect
of population topology interacted with the function is optimized [144]. Although these
previous efforts have recommended population topologies, they still have not precisely
identified the topological factors that may result in the best performance on a range of
functions [144]. An automatic tuning process for parameters is usually computationally
expensive, especially for real-world application problems; therefore, it is desirable to have
a benchmark test that suits the NIOAs’ tuning toolbox and is easy to use [145]. Due to
the lack of a solid mathematical foundation, almost all the NIOAs are working under the
black-box mode; thus, there are always researchers proposing so-called “novel” algorithms
and declaring that their optimizers find better solutions than other NIOAs [136].

(3) The research is not sufficient on the problem extension of basic continuous NIOAs
to different optimization problems, including COPs and MOOPs. The study here on

Entropy 2021, 23, 874 33 of 40

different learning strategies and topological structures of more than 120 MHAs can provide
diverse solutions to COPs and MOOPs. Actually, the current research of mathematical
theories in the aforementioned (2) and problem extensions mainly focus on a few NIOAs,
including GA, PSO and DE, so it is required to pursue further research to more NIOAs.

(4) Another problem is the visualization platforms of NIOAs research. From our
observation, there are few discussions on this aspect except for an early simple attempt [146].
In addition, few benchmark tests suit specific optimization problems such as automatic
parameter tuning [145]. Owing to the insufficient and inadequate theoretical investigation
on the NIOAs, it becomes quite difficult to clearly distinguish the characteristics of different
NIOAs (most of the algorithms look very similar) and this, per se, becomes another
optimization problem of an optimal selection of the NIOAs for a given problem. This is
also a motivation that we attempt to compare and analyze 11 common NIOAs theoretically
and experimentally.

2. The second one is that NIOAs are less capable of solving continuous optimization
problems in complex environments. The real environments are complicated, and the opti-
mization problems can be high-dimensional, large-scale, multi-modal and multi-objective;
the optimization environments can be dynamic, highly constrained and uncertain; the fit-
ness evaluations may contain noises, be imprecise and time-consuming, and sometimes the
fitness functions can be un-deterministic. The complexity of the real environments poses a
great challenge to NIOAs. Although some efforts [147–149] have been made to solve the
aforementioned problems, how to handle these issues is still a very difficult problem.

3. The third one is too few combinations of NIOAs with other related disciplines.
NIOAs intrinsically have a parallel and distributed architecture, while less attention is
paid to the combinations with parallel and distributed technologies, including GPU-based
hardware, robot swarm and cloud platforms. A few works [150–152] focus on the above
issues, and interdisciplinary research is a great potential for NIOAs.

4. The fourth one is that less effort has been made to apply NIOAs to various domain
problem fields. Actually, on the one hand, it is impossible to have one single NIOA to
adapt to all the application problems. On the other hand, a certain kind of NIOAs may be
more effective for certain kinds of problems [134]. Existing enhanced methods of NIOAs
(for example, a combination of different NIOAs) lack an in-depth and targeted discussion
on the reason why the enhanced methods are adopted. Furthermore, various NIOAs have
been adopted to handle the same application problem, but it is not clear why this NIOA
was chosen (researchers just happened to use it).

Consequently, it is our belief that in the future, researchers should tackle the following
three problems in the NIOAs. These three problems indicate three future research directions
for the NIOAs study.

1. Strengthening solid theoretical analysis for the NIOAs. Some theoretical prob-
lems of NIOAs are only studied in specific NIOA (for example, PSO), such as the time
complexity analysis, the convergence proof, topology analysis, the automatic parameter
tuning, the mechanisms of the exploitation and exploration processes. There are still many
problems to be solved in the existing research work [140–142], and the theoretical analysis
of other NIOAs needs to be analyzed deeply. COPs and MOOPs should be further studied
by extending and combining the various existing NIOAs. Furthermore, it is necessary
to develop a visualization platform of deconstructing, modeling and simulation of the
interactions of components in NIOAs, to make it convenient to study the mechanisms of
self-organization, direct/indirect communication and the processes of intelligent emer-
gence on various swarm systems and application cases. It is also necessary to establish a
benchmark test suite and easy-to-use algorithm toolbox for different problems, for example,
automatic parameter tuning and the aforementioned problems in complex environments.

2. Designing novel NIOAs to solve complicated optimization problems. Many
real-world optimization problems are very complex, such as the multi-model and multi-
objective problems, the constrained or uncertainty problems, the large-scale optimization
problems, the optimization problems with noisy, imprecise or time-varying fitness evalua-

Entropy 2021, 23, 874 34 of 40

tions. It is another important direction to design more targeted and effective NIOAs for the
above problems.

3. Deep fusion with other related disciplines. In order to improve the performance of
the current NIOAs, it is indispensable to combine the NIOAs with other related disciplines
or directions, such as distributed and parallel computing, machine learning, quantum
computation and robot engineering. More concretely, because NIOAs by nature possess
the characteristics of distributed parallelism, it is more easily and natural for them to be
implemented in distributed and parallel environments, such as cloud platforms and GPU-
based hardware environments. Furthermore, for some large-scale optimization problems,
the robot swarm can be a good solution that combines NIOAs and robot engineering. With
the support from machine learning methods, NIOAs can become efficient to handle the
multi-modal multi-objective optimization problems, and on the other way around, NIOAs
can provide optimization support to machine learning tasks, such as the clustering problem
and the association rules mining problem.

4. Combination with specific applications. It is necessary to design customized NIOA
for specific application problems; the topological structure, learning strategy and method
of parameters’ selection of customized NIOAs may be suitable to a specific problem,
which can acquire the good convergence speed and optimization performance. Existing
applications rarely have targeted design of NIOAs; more of them use NIOAs directly or
cannot explain the reason for algorithm design with specific problems.

6. Conclusions

Nature-Inspired Optimization Algorithms (NIOAs) can provide satisfactory solutions
to the NP-hard problems, which are difficult and sometimes even impossible for tradi-
tional optimization methods to handle. Thus, the NIOAs have been widely applied to
various fields both theoretically and in practice; examples including function optimization
problems (convex, concave, high or low dimension and single peak or multiple peaks),
combinatorial optimization problems (traveling salesman problem (TSP), knapsack prob-
lem, bin-packing problem, layout-optimization problem, graph-partitioning problem and
production-scheduling problem), automatic control problems (control system optimization,
robot structure and trajectory planning), image-processing problems (image recognition,
restoration and edge-feature extraction), data-mining problems (feature selection, classifi-
cation, association rules mining and clustering).

Many NIOAs and their variants have been proposed in the last 30 years. However, for
the specific optimization problems, researchers tend to choose the NIOAs based on their
narrow experiences or biased knowledge because there lacks an overall and systematic
comparison and analysis study of these NIOAs. This study aims to bridge this gap; the
contributions of this paper are fourfold. First, we summarize the uniform formal descrip-
tion for the NIOAs, analyze the similarities and differences among the 11 common NIOAs;
second, we compare the performance of 11 NIOAs comprehensively, which can reflect the
essential characteristics of each algorithm; third, we present a relatively comprehensive
list of all the NIOAs so far, the first attempt to systematically summarize existing NIOAs,
although it is very hard work; fourth, we comprehensively discuss the challenges and
future directions of the whole NIOAs field, which can provide a reference for the further
research of NIOAs. Actually, we are not aiming to find a super algorithm that can solve all
problems in different fields once and for all (it is an impossible task). Instead, we propose
a useful reference to help researchers to choose suitable algorithms more pertinently for
different application scenarios in order to take a good advantage and make full use of the
different NIOAs. We believe, with this survey work, that more novel-problem-oriented
NIOAs will emerge in the future, and we hope that this work can be a good reference and
handbook for the NIOAs innovation and applications.

Undoubtedly, it is necessary and meaningful to make a 34 comprehensive comparison
of the common NIOAs, and we believe that more efforts are required to further this
review in the future. First, the state-of-the-art variants of the 11 common NIOAs will

Entropy 2021, 23, 874 35 of 40

be compared and analyzed comprehensively, discussing their convergence, topological
structures, learning strategies, the method of parameter tuning and the application field.
Second, there are more than 120 MHAs with various topological structures and learning
strategies. For example, the recently proposed chicken swarm optimization (CSO) and
spider monkey optimization (SMO) algorithms have a hierarchical topological structure
and grouping/regrouping learning strategies. Thus, the comprehensive analysis of various
topological structures and learning strategies of NIOAs is another future work.

Supplementary Materials: The supplementary figures and tables are available online at https://
www.mdpi.com/article/10.3390/e23070874/s1.

Author Contributions: Conceptualization, Z.W. and C.Q.; methodology, Z.W.; software, C.Q.; formal
analysis, Z.W.; investigation, Z.W., B.W. and C.Q.; data curation, B.W. and C.Q.; writing—original
draft preparation, Z.W.; writing—review and editing, W.W.S.; visualization, Z.W. and W.W.S.; super-
vision, B.W. and W.W.S.; project administration, Z.W.; funding acquisition, Z.W. and B.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the National Science Foundation of China (Grant
nos. 71972177 and 61363075), the National High Technology Research and Development Program
(“863” Program) of China (Grant no 2012AA12A308), the Yue Qi Young Scholars Program of China
University of Mining and Technology, Beijing (Grant no. 800015Z1117), the Department of Science
and Technology of Jiangxi Province of China (Grant nos. 20161BBG70078 and KJLD13031) and the
Department of Education of Jiangxi Province of China (Grant no. GJJ180270).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data are generated by 30 BBOB functions and 11 NIOAs, the
results are included within the manuscript and supplementary materials.

Acknowledgments: The authors are grateful for the anonymous reviewers who have made many
constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fister, I., Jr.; Yang, X.S.; Brest, J.; Fister, D. A Brief Review of Nature-Inspired Algorithms for Optimization. Elektrotehniški Vestn.

2013, 80, 116–122.
2. Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975.
3. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the 1995 IEEE International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.
4. Storn, R.; Price, K. Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Space. J.

Glob. Opt. 1997, 11, 341–359. [CrossRef]
5. Dervis, K.; Bahriye, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)

algorithm. J. Glob. Optim. 2007, 39, 459–471.
6. Colorni, A.; Dorigo, M.; Maniezzo, V. Distributed optimization by ant colonies. In Proceedings of the 1st European Conference on

Artificial Life, York, UK, 11–13 November 1991; pp. 134–142.
7. Yang, X.S.; Deb, S. Cuckoo Search via Lévy Flights. In Proceedings of the 2009 World Congress on Nature and Biologically

Inspired Computing, Coimbatore, India, 9–11 December 2009; pp. 210–214.
8. Yang, X.S.; Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483.

[CrossRef]
9. Yang, X.S. Nature-Inspired Metaheutistic Algorithms; Luniver Press: Beckington, UK, 2008.
10. Bersini, H.; Varela, F.J. The Immune Recruitment Mechanism: A Selective Evolutionary Strategy. In Proceedings of the Interna-

tional Conference on Genetic Algorithms, San Diego, CA, USA, 13–16 July 1991; pp. 520–526.
11. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
12. Esmat, R.; Hossein, N.P.; Saeid, S. GSA: A Gravitational Search Algorithm. Inform. Sci. 2009, 179, 2232–2248.
13. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.

[CrossRef]
14. Lim, T.Y. Structured population genetic algorithms: A literature survey. Artif. Intell. Rev. 2014, 41, 385–399. [CrossRef]

https://www.mdpi.com/article/10.3390/e23070874/s1
https://www.mdpi.com/article/10.3390/e23070874/s1
http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1108/02644401211235834
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1177/003754970107600201
http://doi.org/10.1007/s10462-012-9314-6

Entropy 2021, 23, 874 36 of 40

15. Rezaee Jordehi, A. Particle swarm optimisation for dynamic optimisation problems: A review. Neural Comput. Appl. 2014, 25,
1507–1516. [CrossRef]

16. Dervis, K.; Beyza, G.; Celal, O.; Nurhan, K. A comprehensive survey: Artificial bee colony (ABC) algorithm and applications.
Artif. Intell. Rev. 2014, 42, 21–57.

17. Chawla, M.; Duhan, M. Bat Algorithm: A Survey of the State-Of-The-Art. Appl. Artif. Intell. 2015, 29, 617–634. [CrossRef]
18. Dasgupta, D.; Yu, S.H.; Nino, F. Recent Advances in Artificial Immune Systems: Models and Applications. Appl. Soft Comput.

2011, 11, 1574–1587. [CrossRef]
19. Fister, I., Jr.; Yang, X.S.; Brest, J. A comprehensive review of firefly algorithms. Swarm Evol. Comput. 2013, 13, 34–46. [CrossRef]
20. Mohamad, A.B.; Zain, A.M.; Bazin, N.E.N. Cuckoo search algorithm for optimization problems—A literature review and its

applications. Appl. Artif. Intell. 2014, 28, 419–448. [CrossRef]
21. Swagatam, D.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2011, 15, 4–31.
22. Esmat, R.; Elaheh, R.; Hossein, N.P. A comprehensive survey on gravitational search algorithm. Swarm Evol. Comput. 2018, 41,

141–158.
23. Dorigo, M.; Blum, C. Ant colony optimization theory: A survey. Theor. Comput. Sci. 2005, 344, 243–278. [CrossRef]
24. Hatta, N.M.; Zain, A.M.; Sallehuddin, R.; Shayfull, Z.; Yusoff, Y. Recent studies on optimisation method of Grey Wolf Optimiser

(GWO): A review (2014–2017). Artif. Intell. Rev. 2019, 52, 2651–2683. [CrossRef]
25. Alia, O.M.; Mandava, R. The variants of the harmony search algorithm: An overview. Artif. Intell. Rev. 2011, 36, 49–68. [CrossRef]
26. Chakraborty, A.; Kar, A.K. Swarm Intelligence: A Review of Algorithms. In Nature-Inspired Computing and Optimization; Springer:

Berlin/Heidelberg, Germany, 2017; pp. 475–494.
27. Ab Wahab, M.N.; Nefti-Meziani, S.; Atyabi, A. A Comprehensive Review of Swarm Optimization Algorithms. PLoS ONE 2015,

10, e0122827. [CrossRef]
28. Kar, A.K. Bio inspired computing–A review of algorithms and scope of applications. Expert Syst. Appl. 2016, 59, 20–32. [CrossRef]
29. Chu, S.C.; Huang, H.C.; Roddick, J.F. Overview of Algorithms for Swarm Intelligence. In Proceedings of the 3rd International

Conference on Computational Collective Intelligence, GdyNIOA, Poland, 21–23 September 2011; pp. 28–41.
30. Parpinelli, R.S. New inspirations in swarm intelligence: A survey. Int. J. Bio-Inspir. Comput. 2011, 3, 1–16. [CrossRef]
31. Monismith, D.R.; Mayfield, B.E. Slime Mold as a Model for Numerical Optimization. In Proceedings of the 2008 IEEE Swarm

Intelligence Symposium, St. Louis, MO, USA, 21–23 September 2008.
32. Havens, T.C.; Spain, C.J.; Salmon, N.G.; Keller, J.M. Roach Infestation Optimization. In Proceedings of the 2008 IEEE Swarm

Intelligence Symposium, St. Louis, MO, USA, 21–23 September 2008.
33. Abbass, H.A. MBO: Marriage in Honey Bees Optimization A Haplometrosis Polygynous Swarming Approach. In Proceedings of

the 2001 IEEE Congress on Evolutionary Computation, Seoul, Korea, 27–30 May 2001; pp. 207–214.
34. Burnet, F.M. The Clonal Selection Theory of Acquired Immunity; Cambridge Univ. Press: Cambridge, UK, 1959.
35. Xiao, R.B.; Wang, L. Artificial Immune System Principle, Models, Analysis and Perspectives. Chin. J. Comput. 2002, 25, 1281–1292.
36. Reynolds, C. Flocks, herds, and schools: A distributed behavioral model. Comput. Graph. 1987, 21, 25–34. [CrossRef]
37. Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Safe. 2006,

91, 992–1007. [CrossRef]
38. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
39. Deb, K.; Beyer, H.G. Self-adaptive genetic algorithms with simulated binary crossover. Evol. Comput. 2001, 9, 197–221. [CrossRef]

[PubMed]
40. Payne, A.W.R.; Glen, R.C. Molecular Recognition Using A Binary Genetic Search Algorithm. J. Mol. Graph. Model. 1993, 11, 74–91.

[CrossRef]
41. Stanimirović, Z.; Kratica, J.; Dugošija, D. Genetic algorithms for solving the discrete ordered median problem. Eur. J. Oper. Res.

2007, 182, 983–1001. [CrossRef]
42. Leung, Y.W.; Wang, Y.P. An Orthogonal Genetic Algorithm with Quantization for Global Numerical Optimization. IEEE Trans.

Evol. Comput. 2001, 5, 41–53. [CrossRef]
43. Tsai, J.T.; Liu, T.K.; Chou, J.H. Hybrid Taguchi-genetic algorithm for global numerical optimization. IEEE Trnas. Evol. Comput.

2004, 8, 365–377. [CrossRef]
44. Sarma, K.C.; Adeli, H. Fuzzy genetic algorithm for optimization of steel structures. J. Struct. Eng. 2000, 126, 596–604. [CrossRef]
45. Yuan, X.H.; Yuan, Y.B.; Zhang, Y.C. A hybrid chaotic genetic algorithm for short-term hydro system scheduling. Math. Comput.

Simul. 2002, 59, 319–327. [CrossRef]
46. Jiao, L.C.; Wang, L. A Novel Genetic Algorithm Based on Immunity. IEEE Trans. Syst. Man Cybern. 2000, 30, 552–561. [CrossRef]
47. Juang, C.F. A Hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man

Cybern. Part B 2004, 34, 997–1006. [CrossRef] [PubMed]
48. Li, B.B.; Wang, L. A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling. IEEE Trans. Syst. Man

Cybern. Part B 2007, 37, 576–591. [CrossRef]
49. Tripathi, P.K.; Bandyopadhyay, S.; Pal, S.K. Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration

coefficients. Inform. Sci. 2007, 177, 5033–5049. [CrossRef]

http://doi.org/10.1007/s00521-014-1661-6
http://doi.org/10.1080/08839514.2015.1038434
http://doi.org/10.1016/j.asoc.2010.08.024
http://doi.org/10.1016/j.swevo.2013.06.001
http://doi.org/10.1080/08839514.2014.904599
http://doi.org/10.1016/j.tcs.2005.05.020
http://doi.org/10.1007/s10462-018-9634-2
http://doi.org/10.1007/s10462-010-9201-y
http://doi.org/10.1371/journal.pone.0122827
http://doi.org/10.1016/j.eswa.2016.04.018
http://doi.org/10.1504/IJBIC.2011.038700
http://doi.org/10.1145/37402.37406
http://doi.org/10.1016/j.ress.2005.11.018
http://doi.org/10.1109/4235.996017
http://doi.org/10.1162/106365601750190406
http://www.ncbi.nlm.nih.gov/pubmed/11382356
http://doi.org/10.1016/0263-7855(93)87001-L
http://doi.org/10.1016/j.ejor.2006.09.069
http://doi.org/10.1109/4235.910464
http://doi.org/10.1109/TEVC.2004.826895
http://doi.org/10.1061/(ASCE)0733-9445(2000)126:5(596)
http://doi.org/10.1016/S0378-4754(01)00363-9
http://doi.org/10.1109/3468.867862
http://doi.org/10.1109/TSMCB.2003.818557
http://www.ncbi.nlm.nih.gov/pubmed/15376846
http://doi.org/10.1109/TSMCB.2006.887946
http://doi.org/10.1016/j.ins.2007.06.018

Entropy 2021, 23, 874 37 of 40

50. Ahmed, E.; Shawki, A.; Robert, D. Strength Pareto Particle Swarm Optimization and Hybrid EA-PSO for Multi-Objective
Optimization. Evol. Comput. 2010, 18, 127–156.

51. Zhan, Z.H.; Zhang, J.; Li, Y.; Chung, H.S.H. Adaptive Particle Swarm Optimization. IEEE Trans. Syst. Man Cybern. Part B 2009, 39,
1362–1381. [CrossRef]

52. Shi, Y.H.; Eberhart, R.C. Fuzzy adaptive particle swarm optimization. In Proceedings of the Congress on Evolutionary Computa-
tion 2001, Soul, Korea, 27–30 May 2001; pp. 101–106.

53. Mirjalili, S.; Lewis, A. S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization. Swarm Evol. Comput.
2013, 9, 1–14. [CrossRef]

54. Liao, C.J.; Tseng, C.T.; Luarn, P. A discrete version of particle swarm optimization for flowshop scheduling problems. Comput.
Oper. Res. 2007, 34, 3099–3111. [CrossRef]

55. Zhao, X.C. A perturbed particle swarm algorithm for numerical optimization. Appl. Soft Comput. 2010, 10, 119–124.
56. Wang, Y.; Liu, J.H. Chaotic particle swarm optimization for assembly sequence planning. Robot. Comput. Integr. Manuf. 2010, 26,

212–222. [CrossRef]
57. Liu, H.; Cai, Z.X.; Wang, Y. Hybridizing particle swarm optimization with differential evolution for constrained numerical and

engineering optimization. Appl. Soft Comput. 2010, 10, 629–640. [CrossRef]
58. Santucci, V.; Milani, A. Particle Swarm Optimization in the EDAs Framework. In Proceedings of the 15th Online World Conference

on Soft Computing in Industrial Applications, Electr Network, Online, 15–17 November 2010; pp. 87–96.
59. Plevris, V.; Papadrakakis, M. A Hybrid Particle Swarm-Gradient Algorithm for Global Structural Optimization. Comput. Civ.

Infrastruct. Eng. 2011, 26, 48–68. [CrossRef]
60. Bachlaus, M.; Pandey, M.K.; Mahajan, C. Designing an integrated multi-echelon agile supply chain network: A hybrid taguchi-

particle swarm optimization approach. J. Intell. Manuf. 2008, 19, 747–761. [CrossRef]
61. Akbari, R.; Hedayatzadeh, R.; Ziarati, K.; Hassanizadeh, B. A multi-objective artificial bee colony algorithm. Swarm Evol. Comput.

2012, 2, 39–52. [CrossRef]
62. Song, X.Y.; Yan, Q.F.; Zhao, M. An adaptive artificial bee colony algorithm based on objective function value information. Appl.

Soft Comput. 2017, 55, 384–401. [CrossRef]
63. Kashan, M.H.; Nahavandi, N.; Kashan, A.H. DisABC: A new artificial bee colony algorithm for binary optimization. Appl. Soft

Comput. 2012, 12, 342–352. [CrossRef]
64. Pan, Q.K.; Tasgetiren, M.F.; Suganthan, P.N.; Chua, T.J. A discrete artificial bee colony algorithm for the lot-streaming flow shop

scheduling problem. Inform. Sci. 2011, 181, 2455–2468. [CrossRef]
65. Teimouri, R.; Baseri, H. Forward and backward predictions of the friction stir welding parameters using fuzzy-artificial bee

colony-imperialist competitive algorithm systems. J. Intell. Manuf. 2015, 26, 307–319. [CrossRef]
66. Xu, C.F.; Duan, H.B.; Liu, F. Chaotic artificial bee colony approach to Uninhabited Combat Air Vehicle (UCAV) path planning.

Aerosp. Sci. Technol. 2010, 14, 535–541. [CrossRef]
67. Jadon, S.S.; Tiwari, R.; Sharma, H.; Bansal, J.C. Hybrid Artificial Bee Colony algorithm with Differential Evolution. Appl. Soft

Comput. 2017, 58, 11–24. [CrossRef]
68. Kang, F.; Li, J.J.; Xu, Q. Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Comput. Struct. 2009, 87,

861–870. [CrossRef]
69. Yang, X.S. Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspir. Comput. 2011, 3, 267–274. [CrossRef]
70. Khooban, M.H.; Niknam, T. A new intelligent online fuzzy tuning approach for multi-area load frequency control: Self Adaptive

Modified Bat Algorithm. Int. J. Electr. Power Energy Syst. 2015, 71, 254–261. [CrossRef]
71. Mirjalili, S.; Mirjalili, S.M.; Yang, X.S. Binary bat algorithm. Neural Comput. Appl. 2014, 25, 663–681. [CrossRef]
72. Osaba, E.; Yang, X.S.; Diaz, F.; Lopez-Garcia, P.; Carballedo, R. An improved discrete bat algorithm for symmetric and asymmetric

Traveling Salesman Problems. Eng. Appl. Artif. Intell. 2016, 48, 59–71. [CrossRef]
73. Wang, G.G.; Guo, L.H. A Novel Hybrid Bat Algorithm with Harmony Search for Global Numerical Optimization. J. Appl. Math.

2013, 2013, 696491. [CrossRef]
74. Perez, J.; Valdez, F.; Castillo, O. Modification of the Bat Algorithm using Fuzzy Logic for Dynamical Parameter Adaptation. In

Proceedings of the IEEE Congress on Evolutionary Computation, Sendai, Japan, 25–28 May 2015; pp. 464–471.
75. Gandomi, A.H.; Yang, X.S. Chaotic bat algorithm. J. Comput. Sci.-NETH 2014, 5, 224–232. [CrossRef]
76. Fister, I.; Fong, S.; Brest, J.; Fister, I. A Novel Hybrid Self-Adaptive Bat Algorithm. Sci. World J. 2014, 2014, 709738. [CrossRef]

[PubMed]
77. Wang, H.; Wang, W.J.; Cui, L.Z.; Sun, H.; Zhao, J.; Wang, Y.; Xue, Y. A hybrid multi-objective firefly algorithm for big data

optimization. Appl. Soft Comput. 2018, 69, 806–815. [CrossRef]
78. Baykasoglu, A.; Ozsoydan, F.B. Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl. Soft

Comput. 2015, 36, 152–164. [CrossRef]
79. Zhang, J.; Gao, B.; Chai, H.T.; Alma, Z.Q.; Yang, G.F. Identification of DNA-binding proteins using multi-features fusion and

binary firefly optimization algorithm. BMC Bioinform. 2016, 17, 1–12. [CrossRef]
80. Sayadi, M.K.; Hafezalkotob, A.; Naini, S.G.J. Firefly-inspired algorithm for discrete optimization problems: An application to

manufacturing cell formation. J. Manuf. Syst. 2013, 32, 78–84. [CrossRef]

http://doi.org/10.1109/TSMCB.2009.2015956
http://doi.org/10.1016/j.swevo.2012.09.002
http://doi.org/10.1016/j.cor.2005.11.017
http://doi.org/10.1016/j.rcim.2009.05.003
http://doi.org/10.1016/j.asoc.2009.08.031
http://doi.org/10.1111/j.1467-8667.2010.00664.x
http://doi.org/10.1007/s10845-008-0125-1
http://doi.org/10.1016/j.swevo.2011.08.001
http://doi.org/10.1016/j.asoc.2017.01.031
http://doi.org/10.1016/j.asoc.2011.08.038
http://doi.org/10.1016/j.ins.2009.12.025
http://doi.org/10.1007/s10845-013-0784-4
http://doi.org/10.1016/j.ast.2010.04.008
http://doi.org/10.1016/j.asoc.2017.04.018
http://doi.org/10.1016/j.compstruc.2009.03.001
http://doi.org/10.1504/IJBIC.2011.042259
http://doi.org/10.1016/j.ijepes.2015.03.017
http://doi.org/10.1007/s00521-013-1525-5
http://doi.org/10.1016/j.engappai.2015.10.006
http://doi.org/10.1155/2013/696491
http://doi.org/10.1016/j.jocs.2013.10.002
http://doi.org/10.1155/2014/709738
http://www.ncbi.nlm.nih.gov/pubmed/25187904
http://doi.org/10.1016/j.asoc.2017.06.029
http://doi.org/10.1016/j.asoc.2015.06.056
http://doi.org/10.1186/s12859-016-1201-8
http://doi.org/10.1016/j.jmsy.2012.06.004

Entropy 2021, 23, 874 38 of 40

81. Wang, G.G.; Guo, L.H.; Duan, H.; Wang, H.Q. A New Improved Firefly Algorithm for Global Numerical Optimization. J. Comput.
Theor. Nanos 2014, 11, 477–485. [CrossRef]

82. Chandrasekaran, K.; Simon Sishaj, P. Optimal deviation based firefly algorithm tuned fuzzy design for multi-objective UCP. IEEE
Trans. Power Syst. 2013, 28, 460–471. [CrossRef]

83. Coelho dos Santos, L.; de Andrade Bernert, D.L.; Mariani, V.C. A Chaotic Firefly Algorithm Applied to Reliability-Redundancy
Optimization. In Proceedings of the 2011 IEEE Congress of Evolutionary Computation, New Orleans, LA, USA, 2011; pp. 517–521.

84. Abdullah, A.; Deris, S.; Mohamad, M.S.; Hashim, S.Z.M. A new hybrid firefly algorithm for complex and nonlinear problem. In
Distributed Computing and Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2012; pp. 673–680.

85. Satapathy, P.; Dhar, S.; Dash, P.K. Stability improvement of PV-BESS diesel generator-based microgrid with a new modified
harmony search-based hybrid firefly algorithm. IET Renew. Power Gen. 2017, 11, 566–577. [CrossRef]

86. Luh, G.C.; Chueh, C.H.; Liu, W.W. Moia: Multi-objective immune algorithm. Eng. Optim. 2003, 35, 143–164. [CrossRef]
87. Shao, X.G.; Cheng, L.J.; Cai, W.S. An adaptive immune optimization algorithm for energy minimization problems. J. Chem. Phys.

2004, 120, 11401–11406. [CrossRef] [PubMed]
88. Zhao, X.C.; Song, B.Q.; Huang, P.Y.; Wen, Z.C.; Weng, J.L.; Fan, Y. An improved discrete immune optimization algorithm based

on PSO for QoS-driven web service composition. Appl. Soft Comput. 2012, 12, 2208–2216. [CrossRef]
89. Tsai, J.T.; Ho, W.H.; Liu, T.K.; Chou, J.H. Improved immune algorithm for global numerical optimization and job-shop scheduling

problems. Appl. Math. Comput. 2007, 194, 406–424. [CrossRef]
90. Sahan, S.; Polat, K.; Kodaz, H.; Günes ,̧ S. A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for

breast cancer diagnosis. Comput. Biol. Med. 2007, 37, 415–423. [CrossRef] [PubMed]
91. He, H.; Qian, F.; Du, W.L. A chaotic immune algorithm with fuzzy adaptive parameters. Asia-Pac. J. Chem. Eng. 2008, 3, 695–705.

[CrossRef]
92. Lin, Q.Z.; Zhu, Q.L.; Huang, P.Z.; Chen, J.Y.; Ming, Z.; Yu, J.P. A novel hybrid multi-objective immune algorithm with adaptive

differential evolution. Comput. Oper. Res. 2015, 62, 95–111. [CrossRef]
93. Ali Riza, Y. An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization

problems in industry. J. Mater. Process. Tech. 2009, 209, 2773–2780.
94. Chandrasekaran, K.; Simon Sishaj, P. Multi-objective scheduling problem: Hybrid approach using fuzzy assisted cuckoo search

algorithm. Swarm Evol. Comput. 2012, 5, 1–16. [CrossRef]
95. Mlakar, U.; Fister, I.; Fister, I. Hybrid self-adaptive cuckoo search for global optimization. Swarm Evol. Comput. 2016, 29, 47–72.

[CrossRef]
96. Rodrigues, D.; Pereira, L.A.M.; Almeida, T.N.S.; Papa, J.P.; Souza, A.N.; Romos, C.C.O.; Yang, X.S. BCS: A Binary Cuckoo Search

algorithm for feature selection. In Proceedings of the 2013 IEEE International Symposium on Circuits and Systems, Beijing, China,
19–23 May 2013; pp. 465–468.

97. Ouaarab, A.; Ahiod, B.; Yang, X.S. Discrete cuckoo search algorithm for the travelling salesman problem. Neural Comput. Appl.
2014, 24, 1659–1669. [CrossRef]

98. Guerrero, M.; Castillo, O.; Garcia, M. Fuzzy dynamic parameters adaptation in the Cuckoo Search Algorithm using Fuzzy logic.
In Proceedings of the IEEE Congress on Evolutionary Computation, Sendai, Japan, 25–28 May 2015; pp. 441–448.

99. Wang, G.G.; Deb, S.; Gandomi, A.H.; Zhang, Z.J.; Alavi, A.H. Chaotic cuckoo search. Soft Comput. 2016, 20, 3349–3362. [CrossRef]
100. Kanagaraj, G.; Ponnambalam, S.G.; Jawahar, N.; Nilakantan, J.M. An effective hybrid cuckoo search and genetic algorithm for

constrained engineering design optimization. Eng. Optim. 2014, 46, 1331–1351. [CrossRef]
101. Wang, G.G.; Gandomi, A.H.; Zhao, X.J.; Chu, H.C.E. Hybridizing harmony search algorithm with cuckoo search for global

numerical optimization. Soft Comput. 2016, 20, 273–285. [CrossRef]
102. Ali, M.; Siarry, P.; Pant, M. An efficient Differential Evolution based algorithm for solving multi-objective optimization problems.

Eur. J. Oper. Res. 2012, 217, 404–416. [CrossRef]
103. Cui, L.Z.; Li, G.H.; Lin, Q.Z.; Chen, J.Y.; Lu, N. Adaptive differential evolution algorithm with novel mutation strategies in

multiple sub-populations. Comput. Oper. Res. 2016, 65, 155–173. [CrossRef]
104. Wang, L.; Pan, Q.K.; Suganthan, P.N.; Wang, W.H.; Wang, Y.M. A novel hybrid discrete differential evolution algorithm for

blocking flow shop scheduling problems. Comput. Oper. Res. 2010, 27, 509–520. [CrossRef]
105. Pan, Q.K.; Tasgetiren, M.F.; Liang, Y.C. A discrete differential evolution algorithm for the permutation flowshop scheduling

problem. Comput. Ind. Eng. 2008, 55, 795–816. [CrossRef]
106. Maulik, U.; Saha, I. Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery.

Pattern Recognit. 2009, 42, 2135–2149. [CrossRef]
107. Dos Santos, C.L.; Ayala, H.V.H.; Mariani, V.C. A self-adaptive chaotic differential evolution algorithm using gamma distribution

for unconstrained global optimization. Appl. Math. Comput. 2014, 234, 452–459.
108. Li, X.; Yin, M. Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony

algorithm. Nonlinear Dynam 2014, 77, 61–71. [CrossRef]
109. Sayah, S.; Hamouda, A. A hybrid differential evolution algorithm based on particle swarm optimization for nonconvex economic

dispatch problems. Appl. Soft Comput. 2013, 13, 1608–1619. [CrossRef]
110. Wang, L.; Zou, F.; Hei, X.H.; Yang, D.D.; Chen, D.B.; Jiang, Q.Y.; Cao, Z.J. A hybridization of teaching–learning-based optimization

and differential evolution for chaotic time series prediction. Neural Comput. Appl. 2014, 25, 1407–1422. [CrossRef]

http://doi.org/10.1166/jctn.2014.3383
http://doi.org/10.1109/TPWRS.2012.2201963
http://doi.org/10.1049/iet-rpg.2016.0116
http://doi.org/10.1080/0305215031000091578
http://doi.org/10.1063/1.1753257
http://www.ncbi.nlm.nih.gov/pubmed/15268174
http://doi.org/10.1016/j.asoc.2012.03.040
http://doi.org/10.1016/j.amc.2007.04.038
http://doi.org/10.1016/j.compbiomed.2006.05.003
http://www.ncbi.nlm.nih.gov/pubmed/16904096
http://doi.org/10.1002/apj.204
http://doi.org/10.1016/j.cor.2015.04.003
http://doi.org/10.1016/j.swevo.2012.01.001
http://doi.org/10.1016/j.swevo.2016.03.001
http://doi.org/10.1007/s00521-013-1402-2
http://doi.org/10.1007/s00500-015-1726-1
http://doi.org/10.1080/0305215X.2013.836640
http://doi.org/10.1007/s00500-014-1502-7
http://doi.org/10.1016/j.ejor.2011.09.025
http://doi.org/10.1016/j.cor.2015.09.006
http://doi.org/10.1016/j.cor.2008.12.004
http://doi.org/10.1016/j.cie.2008.03.003
http://doi.org/10.1016/j.patcog.2009.01.011
http://doi.org/10.1007/s11071-014-1273-9
http://doi.org/10.1016/j.asoc.2012.12.014
http://doi.org/10.1007/s00521-014-1627-8

Entropy 2021, 23, 874 39 of 40

111. Reza, H.H.; Modjtaba, R. A multi-objective gravitational search algorithm. In Proceedings of the 2nd International Conference on
Computational Intelligence, Communication Systems and Networks, Liverpool, UK, 28–30 July 2010; pp. 7–12.

112. Mirjalili, S.; Lewis, A. Adaptive gbest-guided gravitational search algorithm. Neural Comput. Appl. 2014, 25, 1569–1584. [CrossRef]
113. Yuan, X.H.; Ji, B.; Zhang, S.Q.; Tian, H.; Hou, Y.H. A new approach for unit commitment problem via binary gravitational search

algorithm. Appl. Soft Comput. 2014, 22, 249–260. [CrossRef]
114. Mohammad Bagher, D.; Hossein, N.P.; Mashaallah, M. A discrete gravitational search algorithm for solving combinatorial

optimization problems. Inform. Sci. 2014, 258, 94–107.
115. Sombra, A.; Valdez, F.; Melin, P.; Castillo, O. A new gravitational search algorithm using fuzzy logic to parameter adaptation. In

Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 1068–1074.
116. Gao, S.C.; Vairappan, C.; Wang, Y.; Cao, Q.P.; Tang, Z. Gravitational search algorithm combined with chaos for unconstrained

numerical optimization. Appl. Math. Comput. 2014, 231, 48–62. [CrossRef]
117. Jiang, S.H.; Ji, Z.C.; Shen, Y.X. A novel hybrid particle swarm optimization and gravitational search algorithm for solving

economic emission load dispatch problems with various practical constraints. Int. J. Electr. Power 2014, 55, 628–644. [CrossRef]
118. Sahu, R.K.; Panda, S.; Padhan, S. A novel hybrid gravitational search and pattern search algorithm for load frequency control of

nonlinear power system. Appl. Soft Comput. 2015, 29, 310–327. [CrossRef]
119. Mirjalili, S.; Saremi, S.; Mirjalili, S.M.; Coelho Leandro Dos, S. Multi-objective grey wolf optimizer: A novel algorithm for

multi-criterion optimization. Expert Syst. Appl. 2016, 47, 106–119. [CrossRef]
120. Rodriguez, L.; Castillo, O.; Soria, J. Grey wolf optimizer with dynamic adaptation of parameters using fuzzy logic. In Proceedings

of the 2016 IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, 24–29 July 2016; pp. 3116–3123.
121. Li, L.G.; Sun, L.J.; Guo, J.; Qi, J.; Xu, B.; Li, S.J. Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image

Thresholding. Comput. Intel Neurosci. 2017, 2017, 3116–3123. [CrossRef] [PubMed]
122. Radu-Emil, P.; Radu-Codrut, D.; Emil, M.P. Grey Wolf optimizer algorithm-based tuning of fuzzy control systems with reduced

parametric sensitivity. IEEE Trans. Ind. Electron. 2017, 64, 527–534.
123. Mehak, K.; Sankalap, A. Chaotic grey wolf optimization algorithm for constrained optimization problems. J. Comput. Des. Eng.

2018, 5, 458–472.
124. Zhang, S.; Luo, Q.F.; Zhou, Y.Q. Hybrid Grey Wolf Optimizer Using Elite Opposition-Based Learning Strategy and Simplex

Method. Int. J. Comput. Int. Appl. 2017, 6, 1–38. [CrossRef]
125. Zhang, X.M.; Kang, Q.; Cheng, J.F.; Wang, X. A novel hybrid algorithm based on Biogeography-Based Optimization and Grey

Wolf Optimizer. Appl. Soft Comput. 2018, 67, 197–214. [CrossRef]
126. Gao, K.Z.; Suganthan, P.N.; Pan, Q.K.; Chua, T.J.; Cai, T.X.; Chong, C.S. Pareto-based grouping discrete harmony search algorithm

for multi-objective flexible job shop scheduling. Inform. Sci. 2014, 289, 76–90. [CrossRef]
127. Wang, L.; Yang, R.X.; Xu, Y.; Niu, Q.; Pardalos, P.M.; Fei, M. An improved adaptive binary Harmony Search algorithm. Inform. Sci.

2013, 232, 58–87. [CrossRef]
128. Geem, Z.W. Novel derivative of harmony search algorithm for discrete design variables. Appl. Math. Comput. 2008, 199, 223–230.

[CrossRef]
129. Peraza, C.; Valdez, F.; Garcia, M.; Melin, P.; Castillo, O. A New Fuzzy Harmony Search Algorithm using Fuzzy Logic for Dynamic

Parameter Adaptation. Algorithms 2016, 9, 69. [CrossRef]
130. Alatas, B. Chaotic harmony search algorithms. Appl. Math. Comput. 2010, 216, 2687–2699. [CrossRef]
131. Yuan, Y.; Xu, H.; Yang, J.D. A hybrid harmony search algorithm for the flexible job shop scheduling problem. Appl. Soft Comput.

2013, 13, 3259–3272. [CrossRef]
132. Layeb, A. A hybrid quantum inspired harmony search algorithm for 0–1 optimization problems. J. Comput. Appl. Math. 2013, 253,

14–25. [CrossRef]
133. Wang, Z.W.; Qin, C.; Wan, B.T.; Song, W.W. An Adaptive Fuzzy Chicken Swarm Optimization Algorithm. Math. Probl. Eng. 2021,

2021, 8896794.
134. Li, Z.Y.; Wang, W.Y.; Yan, Y.Y.; Li, Z. PS-ABC: A hybrid algorithm based on particle swarm and artificial bee colony for

high-dimensional optimization problems. Expert Syst. Appl. 2015, 42, 8881–8895. [CrossRef]
135. Pan, T.S.; Dao, T.K.; Nguyen, T.T.; Chu, S.C. Hybrid Particle Swarm Optimization with Bat Algorithm. In Proceedings of the 8th

International Conference on Genetic and Evolutionary Computing, Nanchang, China, 18–20 October 2015; pp. 37–47.
136. Soerensen, K. Metaheuristics—the metaphor exposed. Int. Trans. Oper. Res. 2015, 22, 3–18. [CrossRef]
137. Derrac, J.; Garcia, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]
138. Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M. Mine blast algorithm: A new population based algorithm for solving

constrained engineering optimization problems. Appl. Soft Comput. 2013, 13, 2592–2612. [CrossRef]
139. Joines, J.; Houck, C. On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with

GA’s. In Proceedings of the 1st IEEE Conference on Evolutionary Computation, Orlando, FL, USA, 27–29 June 1994; pp. 579–584.
140. He, J.; Yao, X. Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 2001, 127, 57–85. [CrossRef]
141. Mohammad Reza, B.; Zbigniew, M. Analysis of Stability, Local Convergence, and Transformation Sensitivity of a Variant of the

Particle Swarm Optimization Algorithm. IEEE Trans. Evol. Comput. 2016, 20, 370–385.

http://doi.org/10.1007/s00521-014-1640-y
http://doi.org/10.1016/j.asoc.2014.05.029
http://doi.org/10.1016/j.amc.2013.12.175
http://doi.org/10.1016/j.ijepes.2013.10.006
http://doi.org/10.1016/j.asoc.2015.01.020
http://doi.org/10.1016/j.eswa.2015.10.039
http://doi.org/10.1155/2017/3295769
http://www.ncbi.nlm.nih.gov/pubmed/28127305
http://doi.org/10.1142/S1469026817500122
http://doi.org/10.1016/j.asoc.2018.02.049
http://doi.org/10.1016/j.ins.2014.07.039
http://doi.org/10.1016/j.ins.2012.12.043
http://doi.org/10.1016/j.amc.2007.09.049
http://doi.org/10.3390/a9040069
http://doi.org/10.1016/j.amc.2010.03.114
http://doi.org/10.1016/j.asoc.2013.02.013
http://doi.org/10.1016/j.cam.2013.04.004
http://doi.org/10.1016/j.eswa.2015.07.043
http://doi.org/10.1111/itor.12001
http://doi.org/10.1016/j.swevo.2011.02.002
http://doi.org/10.1016/j.asoc.2012.11.026
http://doi.org/10.1016/S0004-3702(01)00058-3

Entropy 2021, 23, 874 40 of 40

142. Mohammad Reza, B.; Zbigniew, M. Stability Analysis of the Particle Swarm Optimization Without Stagnation Assumption. IEEE
Trans. Evol. Comput. 2016, 20, 814–819.

143. Chen, W.N.; Zhang, J.; Lin, Y.; Chen, N.; Zhan, Z.H.; Chung, H.S.H.; Li, Y.; Shi, Y.H. Particle Swarm Optimization with an Aging
Leader and Challengers. IEEE Trans. Evol. Comput. 2013, 17, 241–258. [CrossRef]

144. Kennedy, J.; Mendes, R. Population structure and particle swarm performance. In Proceedings of the 2002 Congress on
Evolutionary Computation, Honolulu, HI, USA, 12–15 May 2002; pp. 1671–1676.

145. Huang, C.W.; Li, Y.X.; Yao, X. A Survey of Automatic Parameter Tuning Methods for Metaheuristics. IEEE Trans. Evol. Comput.
2020, 24, 201–216. [CrossRef]

146. Hart, E.; Ross, P. GAVEL—A New Tool for Genetic Algorithm Visualization. IEEE Trans. Evol. Comput. 2001, 5, 335–348. [CrossRef]
147. Ryoji, T.; Hisao, I. A Review of Evolutionary Multimodal Multiobjective Optimization. IEEE Trans. Evol. Comput. 2020, 24,

193–200.
148. Ma, X.L.; Li, X.D.; Zhang, Q.F.; Tang, K.; Liang, Z.P.; Xie, W.X.; Zhu, Z.X. A Survey on Cooperative Co-Evolutionary Algorithms.

IEEE Trans. Evol. Comput. 2019, 23, 421–440. [CrossRef]
149. Jin, Y.C.; Wang, H.D.; Chugh, T.; Guo, D.; Miettinen, K. Data-Driven Evolutionary Optimization: An Overview and Case Studies.

IEEE Trans. Evol. Comput. 2019, 23, 442–458. [CrossRef]
150. Djenouri, Y.; Fournier-Viger, P.; Lin, J.C.W.; Djenouri, D.; Belhadi, A. GPU-based swarm intelligence for Association Rule Mining

in big databases. Intell. Data Anal. 2019, 23, 57–76. [CrossRef]
151. Wang, J.L.; Gong, B.; Liu, H.; Li, S.H. Multidisciplinary approaches to artificial swarm intelligence for heterogeneous computing

and cloud scheduling. Appl. Intell. 2015, 43, 662–675. [CrossRef]
152. De, D.; Ray, S.; Konar, A.; Chatterjee, A. An evolutionary SPDE breeding-based hybrid particle swarm optimizer: Application in

coordination of robot ants for camera coverage area optimization. In Proceedings of the 1st International Conference on Pattern
Recognition and Machine Intelligence, Kolkata, India, 20–22 December 2005; pp. 413–416.

http://doi.org/10.1109/TEVC.2011.2173577
http://doi.org/10.1109/TEVC.2019.2921598
http://doi.org/10.1109/4235.942528
http://doi.org/10.1109/TEVC.2018.2868770
http://doi.org/10.1109/TEVC.2018.2869001
http://doi.org/10.3233/IDA-173785
http://doi.org/10.1007/s10489-015-0676-8

	Introduction
	Summary of the Current Survey Work
	Motivations
	Research Methodology
	Scope of Discussion
	Our Contributions
	Structure of the Paper

	Common NIOAs
	The Common Process for the 11 NIOAs
	The Principles of the 11 NIOAs
	Genetic Algorithm (GA)
	Particle Swarm Optimization (PSO) Algorithm
	Artificial Bee Colony (ABC) Algorithm
	Bat Algorithm (BA)
	Immune Algorithm (IA)
	Firefly Algorithm (FA)
	Cuckoo Search (CS) Algorithm
	Differential Evolution (DE) Algorithm
	Gravitational Search Algorithm (GSA)
	Grey Wolf Optimizer (GWO)
	Harmony Search (HS) Optimization

	Theoretical Comparison and Analysis of the 11 NIOAs
	Common Characteristics
	Variant Methods of Common NIOAs
	Differences

	Performance Comparison and Analysis for the 11 NIOAs
	The Description of BBOB Test Functions
	Performance Comparison and Analysis on Benchmark Functions
	The Comparison and Analysis on the Accuracy, Stability and Parameter Sensitivity
	The Efficiency Comparison and Analysis
	The Comparison of Running Time

	Statistical Tests for Algorithm Comparison
	Performance Comparison on Engineering Optimization Problem

	Challenges and Future Directions
	Conclusions
	References

