

Student Thesis
Level: Bachelor

Docker Container Images

Concerns about available container image scanning tools

and image security

Authors: Michael Andersson & Robert Hysing Berg

Supervisor: Hans Jones

Examiner: Yves Rybarczyk

Subject/main field of study: Microdata Analysis

Course code: GMI2C8

Credits: 15

Date of examination: 2022-06-01

At Dalarna University it is possible to publish the student thesis in full text in DiVA.

The publishing is open access, which means the work will be freely accessible to read

and download on the internet. This will significantly increase the dissemination and

visibility of the student thesis.

Open access is becoming the standard route for spreading scientific and academic

information on the internet. Dalarna University recommends that both researchers as

well as students publish their work open access.

I give my/we give our consent for full text publishing (freely accessible on the internet,

open access):

Yes ☒ No ☐

Dalarna University – SE-791 88 Falun – Phone +4623-77 80 00

Abstract:

With the growing use of cloud computing and need for resource effectiveness, the use of

container technology has increased compared to virtual machines. This is since containers

require fewer resources and are significantly faster to start up. A popular container

platform is Docker which lets users manage and run containers. The containers are run

from images that can be downloaded from different sources, Docker Hub being a popular

choice. Because of container technology sharing the OS-kernel with the host, there is a

great need to increase and monitor the security of containers and the images they are run

from. To find vulnerabilities in images, there are image scanning tools available. In this

dissertation, we study 5 different image scanning tools and their performance. Twenty-

five random images were selected from popular images on Docker Hub and were then

scanned for vulnerabilities with the tools in the study. We aimed to answer the following

questions: (1) Are there any clear differences between the number of vulnerabilities found

by different image vulnerability scanning tools? (2) Are there any differences between the

types of vulnerabilities found by different image vulnerability scanning tools? (3) What is

the relative effectiveness of different image vulnerability scanning tools? The results show

that there are considerable differences between different container image scanning tools

regarding the number of found vulnerabilities. We also found that there were differences

regarding the severity-grading of found vulnerabilities between the tested tools. When

using our proposed metric for calculation of relative effectiveness, we discovered that the

tool with the highest relative effectiveness could still miss approximately 39 percent of the

vulnerabilities in images. The tool with the lowest relative effectiveness could miss

approximately 77 percent of the vulnerabilities in images.

Keywords:

Docker, Image, Container, Security, Scanning, Tools

Contents
1 Introduction .. 1

1.1 Background ... 1

1.2 Problem Formulation and Aim ... 2

1.3 Delimitations ... 2

2 Theory .. 3

2.1 Virtual Machines and Containers .. 3

2.2 Docker ... 4

2.2.1 Image Tagging ... 4

2.2.2 Docker Compose .. 4

2.3 Vulnerabilities ... 4

2.3.1 CVE.. 5

2.3.2 CVSS.. 5

2.3.3 Vulnerable Images on Docker Hub .. 5

2.4 Container Security Mechanisms ... 5

2.4.1 Isolation .. 6

Namespaces ... 6

Cgroups ... 6

2.4.2 Increasing Defences ... 6

MAC ... 6

Seccomp .. 7

Capabilities ... 7

2.5 Tools ... 8

Docker Scan (Snyk) .. 9

Trivy .. 9

Anchore ... 9

Grype... 9

Dagda .. 9

Clair... 9

2.6 Mitigation .. 10

3 Method/Methodology .. 11

3.1 Methodology ... 11

3.2 Prerequisites .. 11

3.2.1 Host Software & Hardware .. 11

Virtualization .. 11

Host ... 11

Docker software .. 11

3.2.2 Selection of Tools .. 12

3.2.3 Selection of Images .. 12

3.3 Testing Process ... 13

3.3.1 Metrics for Assessing Tools ... 13

3.3.2 Steps for Performing Vulnerability Scans of Images ... 14

3.4 Ethical Considerations .. 15

3.5 Data Collection ... 15

3.5.1 Docker Scan ... 16

3.5.2 Trivy ... 16

3.5.3 Grype .. 17

3.5.4 Dagda ... 18

3.5.5 Anchore .. 19

3.5.6 Tool Statistics ... 20

3.5.7 Vulnerability Statistics ... 20

4 Results .. 21

5 Discussion .. 28

5.1 Discussion of the Results .. 28

5.1.2 Are there any clear differences between the number of vulnerabilities found by different

image vulnerability scanning tools? .. 31

5.1.3 Are there any differences between the types of vulnerabilities found by different image

vulnerability scanning tools? .. 31

5.1.4 What is the relative effectiveness of different image vulnerability scanning tools? 31

5.2 Usability of the Tested Tools .. 32

5.3 Limitations .. 32

6 Conclusion ... 33

6.1 Future Work .. 33

7 Final Words .. 34

References ... 35

1

1 Introduction

1.1 Background

In our modern society, computers play an increasingly important role in almost every aspect of our

lives, whether directly or indirectly. This has led to a need for scalability of the services they can

provide, and cloud computing is one of the answers to this need.

With the growing use of cloud computing, the use of virtual machines has grown with it since it

provides a way to run several different operating systems on a single device. However, virtual

machines use a lot of resources from their hosts and thus there is a limit to how many virtual machines

can run on a single host (Ahmad, Dimitriou & Sultan, 2019). This is where the use of container

technology come into the picture since containers require fewer resources compared to virtual

machines while still providing isolation.

The growing use of containers has led to an increased need regarding the examination of security

related issues around them. It is of particular interest that containers are more tightly integrated with

the OS of the host compared to virtual machines. Due to this there is a risk that sensitive data from

other containers or the host system itself could be accessed if a container is compromised (Martin,

Raponi, Combe & Di Pietro, 2018).

In Reeves, Tian, Bianchi & Celik (2021), there are examples of different Linux kernel mechanisms

that can be used to increase the security when running containers. Javed & Toor (2021a, 2021b)

examines different tools that can be used to scan java-based container images for vulnerabilities. The

authors then conclude that the available tools were inadequate regarding how accurately they could

find vulnerabilities in Docker container images.

The usage of packages in container images hosted on Docker Hub was analysed in Zerouali, Mens &

De Roover (2021). Their conclusion was that many container images were missing important security

updates to their packages. Lin, Nadi & Khazaei (2020) collected most of the container images that

were available on Docker Hub at the time. One of the properties they measured was the popularity of

different programming languages.

There are multiple signs that the use of container technology and Docker is increasing in popularity.

For example, Matt Carter writes in Matt (October 7, 2021) that the number of Docker Desktop

installations has risen from 3.3 million in February 2021 to 4.7 million in early October 2021. Another

sign is that when searching on the internet with terms such as “most popular container platforms

2022”, Docker is consistently mentioned when found articles are compared, even if the placement

varies (Hiter, February 25, 2022; Aqua Security, n.d.; Software Testing Help, April 4, 2022; Jenna,

2021).

When talking about container images and containers, there is a slight risk of confusion regarding these

terms and their use. A container image (in the rest of the study referred to as image) is a file that

contains the source code, libraries, dependencies, and tools required to run an application. The image

file itself consists of several layers, where each layer builds upon the previous. A container on the

other hand can be considered as a read-write copy of an image with a container layer at the top, which

allows for modification. In essence, images and containers are in much the same thing. The difference

being that the image can be seen as an immutable snapshot of an application and its virtual

environment, while a container is created/run with an image as a blueprint, while adding read-write

possibilities (PhoenixNAP, October 31, 2019).

2

1.2 Problem Formulation and Aim

Much of the previous research on containers, images, and scanning tools has focused on the different

mechanisms that can be used to harden a container or measuring the accuracy of image scanning

tools. Another noteworthy part about previous work is that some have had narrow choices of images

in their evaluation of container scanning tools. An example of this is seen in Javed & Toor (2021b)

where only java-based images are evaluated which could have led to biased results. Due to this, it is

of interest to perform a broader evaluation of image scanning tools with a wider variety of images.

Furthermore, after investigating what tools are available, it was discovered that some of the tools

tested in previous work is no longer available or supported. This also shows that this scene is in

constant change since some of the tools mentioned in Javed & Toor (2021a, 2021b) are no longer

supported or developed. Since some tools are no longer supported or developed, a newer overview on

which tools are available and a comparison between them is of interest.

The availability and functionality of tools for evaluating potential vulnerabilities of Docker images

and containers are an important part of their secure usage. This leads to a need regarding an updated

evaluation of the current state of available tools and their functionality. At the same time the current

state of popular images available from Docker Hub regarding security and vulnerabilities should be

studied since Docker Hub is an active and trusted source of Docker images.

From the above-mentioned points of interests, the following questions were formulated for this study

to focus on:

1. Are there any clear differences between the number of vulnerabilities found by different image

vulnerability scanning tools?

2. Are there any differences between the types of vulnerabilities found by different image

vulnerability scanning tools?

3. What is the relative effectiveness of different image vulnerability scanning tools?

The aim of the study is to investigate different image vulnerability scanning tools to explore

differences in results and effectiveness between the tools.

1.3 Delimitations

While there exists many more platforms for containers, we decided to only look at the Docker

platform due to its popularity and to limit the scope. Likewise, only container image scanning tools

capable of scanning Docker images were selected. There are also multiple container image scanning

tools available and to limit the scope commercial tools were excluded from our study because of

limited funding. This was decided since the trial versions often are simplified, or miss full

functionality, and therefore are not suited for testing and comparing the ability of the tool. Among the

free-to-use tools available, there are differences in the scanning performed by the tools. In this study

we have focused on the tools that perform a static scan on a Docker image rather than the dynamic

scan or monitoring of a container.

3

2 Theory

2.1 Virtual Machines and Containers

Virtual machines, commonly abbreviated as VM:s, are a simulation of physical hardware that can be

run on any host machine that have the required software. The software that creates and runs virtual

machines is called a hypervisor and it allows the user to run multiple virtual machines on a single host

machine, (VMware, n.d.). Each virtual machine contains its own full copy of an operating system and

various other memory allocations for libraries, applications, and storage (Docker, n.d.).

According to Docker (n.d.), the key difference between containers and virtual machines is that

containers are abstracted at the application layer rather than the hardware level. Just like with virtual

machines, there can be multiple containers running on the same host machine. Though there is a

major difference, containers that run on the same host share the operating system kernel with other

containers and the host instead of each container having their own (Wenhao & Zheng, 2020). The lack

of individual operating system kernels leads to a significant decrease in resources needed for running

multiple containers compared to running multiple virtual machines. This also leads to, as mentioned

in Ahmad, Dimitriou & Sultan (2019), that containers are significantly faster to start up than a virtual

machine equivalent.

There is another consequence of the containers and the host system sharing the kernel, the isolation

between them is much weaker when compared to a virtual machine (Martin et al., 2018). Due to this,

there are concerns regarding the security of containers.

The difference between Containerized Applications and Virtual Machines can be seen in figure 1.

This also highlights how the hypervisor manages the hardware and VM:s with their own OS:s, as

opposed to the same host OS kernel being used by Docker Containers.

 Figure 1 – Comparison between Containerized Applications and Virtual Machines (Docker, n.d.).

4

2.2 Docker

Docker is a widely used container manager and is one of the most popular container manager

technologies with 7,3 million accounts registered with Docker (Docker Newsroom, n.d.). There are

many parts of Docker such as the Docker Engine which is the core part of Docker and is what allows

a developer to build and run containers (Docker docs, n.d.a). There is also Docker Hub which allows

developers to share their container images with each other and a wider audience (Docker docs, n.d.b).

In Linux, an image can be pulled from Docker Hub with the command “docker pull <image

name>:<tag>” if the host has a network connection and the Docker Engine installed. One or more

containers can then be run from the downloaded image. This image file is where all the code,

configuration mapping and packages needed to run an application is contained (Mullinix, Konomi,

Townsend & Parizi, 2020). This also means that there lies a great responsibility with the developer of

the image to follow best practices and guidelines when building the image to increase security and

avoid misconfiguration.

2.2.1 Image Tagging

Docker Hub uses tags to identify different versions of images in the form of “<image name>:<tag>”,

for example “alpine:3.15.4”. Each version of an image also has a digest to uniquely identify that

image and the possibility to ensure the integrity of the image. When using the command “-docker pull

<image name>:<tag>”, the tag identifies which version of the image is to be pulled from Docker Hub.

If no tag is given, the default tag of “latest” will be used. The “latest” tag does not stick to the same

version of the image as the other tags, but instead can be set by the author to point at any version of

the image. Usually the “latest” tag points to the latest version of an image. Tagging is of importance

when the user must use a specific version of an image, but also when testing an image or scanning

tools because of the ability to trace versions and their capabilities or results.

2.2.2 Docker Compose

Docker Compose is a tool that uses a YAML file to define services to be used when starting a

container (Docker docs, n.d.d). Docker Compose can also be used to harden a container and increase

the security by setting up different limitations for the container in the YAML file.

2.3 Vulnerabilities

A vulnerability is, according to NIST (n.d.), a

“weakness in an information system, system security procedures, internal controls, or implementation

that could be exploited or triggered by a threat source”.

In this study we use the term vulnerability to describe a registered CVE, bug, or other weakness in an

image or container that could be exploited by a threat actor or give rise to unwanted behaviour that

could compromise the security of the image or container.

5

2.3.1 CVE

CVE stand for Common Vulnerabilities and Exposures. According to The MITRE Corporation (n.d.),

it is a system to identify, define, and catalogue publicly disclosed cybersecurity vulnerabilities. The

system is maintained by The Mitre Corporation and the CVE ID:s are listed in Mitre’s system and in

the US National Vulnerability Database (NVD). Each CVE has a unique name, starting with “CVE”,

followed by the year of registration and a number. An example of a CVE would be CVE-2014-0160,

which is the “Heartbleed” vulnerability. Each severity should also be graded based upon a CVSS-

score.

2.3.2 CVSS

CVSS stand for Common Vulnerability Scoring System. This provides a way to produce a numerical

score reflecting the severity of a vulnerability. The numerical score can then be translated into a

representation of the severity, such as low, medium, high, or critical (Forum of Incident Response and

Security Teams, n.d.).

2.3.3 Vulnerable Images on Docker Hub

In a study from 2020, cyber security firm Prevasio investigated container images on Docker Hub

(Prevasio, 2020). They found that out of approximately 4 million images scanned, more than half of

the containers from the images had one or more critical vulnerabilities. Their analysis also showed

that 0.16 percent, or 6432 images, of the total images scanned, were malicious or potentially harmful.

Their study was done by performing dynamic analysis on the behaviour of the containers and

scanning the files of running containers. According to Prevasio (2020), not all vulnerabilities or

harmful behaviour could be found or identified unless a container was started from an image. They

found that some images, when run as a container, could download and execute malicious code at

runtime. Each container was run and analysed in an isolated environment.

2.4 Container Security Mechanisms

Since the containers can communicate directly with the kernel of the host, there is a risk of an attacker

performing an escape attack in order to escape the container and compromise the host (Martin et al.,

2018). If an attacker manages to escape a container there is the potential that a privilege escalation or

DoS attack can be executed. Even if an attacker is not able to escape the container, there is a risk that

an attacker, by exploiting a bug or misconfiguration, can run arbitrary code outside of the container

(Reeves et al., 2021). Running arbitrary code outside of the container, from within the container,

effectively means that the attacker in a way has escaped the container. Thus, there is a need for

security mechanisms to secure a container and host.

Because the use of Docker and containers are tightly coupled with the OS kernel of the host, many of

the mechanisms for increased security have to do with different settings regarding the Linux kernel.

These mechanisms are mainly set up and utilized when starting/running a container from an image.

The different mechanisms will be explained in the next sections regarding isolation and increasing

defences.

6

2.4.1 Isolation

In Reeves et al. (2021), the authors highlight two mechanisms of the Linux kernel that provides an

increased security by isolating a container and limiting the resources that can be used by a container.

The two mechanisms are namespaces and cgroups.

Namespaces

Namespaces works by confining processes into different groups to limit access from the container.

There are eight types of namespaces available in Linux (Man7.org, August 27, 2021c):

• Cgroup

• IPC

• Network

• Mount

• PID

• Time

• User

• UTS

If a container process is, for example, put into its own PID namespace, it can only see other processes

that share the same PID namespace (Reeves et al., 2021). This can be used to isolate the processes of

different containers from each other and from the host. There is also the possibility to use the User

namespace to map the root ID of a container to a regular user on the host, which, according to Reeves

et al. (2021), can prevent a malicious process that has gained root access within a container to gain

root permissions on the host. According to the authors, this, for example, effectively prevents a

vulnerability called runC CVE-2019-5736 from executing.

Cgroups

Control groups are referred to as cgroups. In the Linux kernel this is a feature that allow processes to

be organized in a hierarchical manner into groups. The groups usage of different resources can then be

limited and monitored (Man7.org, August 27, 2021b). According to Reeves, Tian, Bianchi, & Celik

(2021), the three main cgroups for containers are CPU, memory, and I/O. Using these cgroups, the

amount of CPU load, memory, and I/O operations can be limited and monitored.

2.4.2 Increasing Defences

There are also, according to Reeves et al. (2021), three security mechanisms in the Linux kernel that a

host can use to secure/defend itself against malicious execution from containers. These are Mandatory

Access Control (MAC), Seccomp, and Capabilities.

MAC

Mandatory Access Control is a form of policy frameworks that can be implemented as Linux Security

Modules (LSM:s). Every action gets tested against the rules in the policy framework, and if the action

passes the rules in the policy framework it is allowed, otherwise the action is not allowed (Reeves et

al., 2021). According to the authors, examples of policy frameworks are SELinux and AppArmor.

7

Seccomp

Seccomp stands for secure computing and is a feature to restrict the calls a process can make to the

kernel (Reeves et al., 2021 & Man7.org, August 27, 2021d). According to Docker docs (n.d.c),

seccomp has to be configured in the kernel and Docker has to be built with seccomp. A seccomp

profile can then be created as a json-file which in short is an allow list that denies or allows system

calls. When seccomp is activated, there is a default profile loaded when a container is run, but the

default profile can be overrun with a user-created profile. According to Docker docs (n.d.c), seccomp

is paramount for running containers with least privilege.

Capabilities

Capabilities is a form of separation of the Linux root permissions into separate units that can be used

to set a more precise permission model regarding constraints for what a user can do (Reeves et al.,

2021). According to Man7.org (August 27, 2021a), there are 41 capabilities implemented in Linux.

There are 14 default capabilities granted when building an image (Moby, 2022), and according to

Reeves et al. (2021), these capabilities should be managed in order to reduce the attack surface. The

capabilities granted by default can be seen in figure 2.

 Figure 2 – Capabilities granted to an image by default (Moby, 2022).

8

2.5 Tools

A simple search on Google with the term “Docker image scanner” leads to a multitude of different

tools for scanning images and containers. There are tools for static scanning of images alongside more

dynamic tools for monitoring running containers. Some of the more popular tools can be seen below

with a short description of the tool. The tools listed in this section are the tools selected for the study

based on the tool selection criteria mentioned in section 3.2.2 Selection of Tools.

Javed & Toor (2021a), studied different tools for vulnerability detection regarding OS and non-OS

packages in images. The tools studied was Clair, Anchore, and Microscanner. Microscanner is now

deprecated and Trivy seems to have replaced Microscanner, whereby we choose to include Trivy in

our study (Aqua Security, 2022). Other popular scanning tools recommended by various instances are

Dagda and Grype. Finally, there is Dockers own scanning tool called Docker scan, which is available

through Docker Desktop and Docker CLI.

All image scanning tools have in common that they scan the images for already known vulnerabilities.

This is because they compare the packages in the image against different vulnerability databases

where vulnerable packages, versions, and related vulnerabilities are stored. Some tools are capable of

also examining binaries in the images to be able to find vulnerabilities if regular package managers

are not used in the images. There are also tools that utilize antivirus technology to be able to scan for

viruses and trojans within the images. Some of the tools had information available regarding the

database(s) used in the scanning process and where the tool got its information from. All the tools

mentioned in this section could scan both OS and non-OS packages, whereby the results of the tests

should not differ considerably between the tools. The different tools and their capabilities/traits can be

seen in table 1.

Tool OS packages Non-OS

packages

AntiVirus

engine

Database

Information

Docker Scan X X

Trivy X X X

Anchore X X

Grype X X X

Dagda X X X X

Clair X X X
Table 1 – Image scanning tools and their capabilities.
OS packages: If the tool can scan OS packages for vulnerabilities.

Non-OS packages: If the tool can scan non-OS packages, i.e., dependencies or other packages, for

vulnerabilities.
AntiVirus engine: If the tool has an antivirus engine that can scan for malicious code inside an image.
Database Information: If there is information available regarding where the tool’s database collects

information.

When inspecting table 1 above and the descriptions of the tools below, there seems to be a slight edge

in favour of Dagda. Dagda has the most features, with even an antivirus engine available, to be able to

find a high number and diverse set of vulnerabilities when scanning images. There is also a wide

range of sources for the vulnerability database presented. This leads to Dagda being the most

promising tool in advance of the actual tests.

9

Docker Scan (Snyk)

Docker scan is a Docker official free-to-use scanning tool for local images and can detect

vulnerabilities in OS and non-OS packages. This tool runs on Snyk engine to perform vulnerability

scanning of images. Snyk is an open-source free-to-use scanning tool/engine. It uses the Snyk

Vulnerability Database, but it is unclear where the database gets the data from.

Trivy

Trivy is an open-source free-to-use image scanner that can detect vulnerabilities in OS and non-OS

packages. Trivy can also scan for example Dockerfiles for configuration issues. The tool can also scan

for hardcoded passwords, API keys, or tokens. It uses the Aqua Vulnerability Database that collects

data from NVD, software vendor advisories, and Kube-Hunter.

Anchore

Anchore Engine is an open-source free-to-use image scanner that can identify vulnerabilities,

malware, misconfigurations, and secrets. It can detect vulnerabilities in OS and non-OS packages. The

vulnerability database draws data from the National Vulnerability Database, but no further

information could be retrieved.

Grype

Grype is an open-source free-to-use tool made by Anchore to scan images for vulnerabilities. It can

detect vulnerabilities in OS and non-OS packages. The vulnerability database draws data from Alpine

Linux SecDB, Amazon Linux ALAS, RedHat RHSAs, Debian Linux CVE Tracker, Github GHSAs,

National Vulnerability Database, Oracle Linux OVAL, RedHat Linux Security Data, Suse Linux

OVAL, and Ubuntu Linux Security.

Dagda

Dagda is an open-source free-to-use scanning tool for images. It performs a static analysis of images

to identify vulnerabilities, trojans, viruses, malware, and other malicious threats. Dagda can detect

vulnerabilities in OS and non-OS packages. It can also scan containers and monitor running

containers and Docker daemon for anomalous activities. Dagda creates a MongoDB instance to which

known vulnerabilities (CVE:s), Bugtraq ID:s, Red Hat Security Advisories, and Red Hat Bug

Advisories, and known exploits from Offensive Security Database are imported. This database is then

used when a scan is performed/active. Dagda also uses ClamAV antivirus engine to detect trojans,

viruses, malware, and other malicious threats.

Clair

Clair is an open-source free-to-use scanning tool. It scans images layer by layer to provide a

notification of vulnerabilities that may be a threat. Clair can detect vulnerabilities in OS and non-OS

packages. Vulnerabilities found are based on the CVE database and similar databases from Red Hat,

Ubuntu, and Debian. Clair was supposed to be part of our study, but we could not get Clair to work

properly in a reasonable timeframe and therefore had to exclude this tool from our study.

10

2.6 Mitigation

When studying the security of images/containers and available tools for examining images, there

arises the question regarding mitigation of risks and the possibility to harden the images/containers. In

Yasrab (2021), the author points out the fact that containers directly communicate with the host

kernel, which can lead to an attacker having direct access to the host kernel. According to the author

there is the possibility to execute SELinux or AppArmor while running Docker Engine, which should

greatly reduce the attack surface. Other suggested actions are to use trusted images and to make use of

the security mechanisms built into the Linux kernel (Yasrab, 2021).

According to Yasrab (2021) and Shen & Yu (2020), increasing the security of a container can be

divided into two parts. The first part is to ensure that the image is secure and trusted when

downloading it from the source or creating your own, but also before actual usage. The second part is

to secure/harden the container when it is run from the image. Most of the Linux kernel security

mechanisms is only possible to set up when the container is started, why it is an important step that,

according to us, can easily be forgotten or overlooked by users new to the usage of container

technology.

11

3 Method/Methodology

3.1 Methodology

This study was based on an explorative method with a quantitative approach regarding data collection

and analysis.

The specific data collected using the scanning tools were total number of vulnerabilities found,

severity, CVE and the date of discovery/registration. These would then be analysed to determine any

differences between the vulnerability scanning tools. A more thorough explanation regarding the steps

taken to collect this data is explained in section 3.3 Testing Process.

This data was also useful when considering the analysis of the current state of vulnerabilities present

within popular images from Docker Hub. The number of vulnerabilities as well as the distribution of

vulnerabilities could be investigated to get an overview of the vulnerabilities on Docker Hub at the

time of data collection. It could also be determined which vulnerability severity is most common and

how fast different severity vulnerabilities get fixed on average by analysing the vulnerabilities date of

discovery.

3.2 Prerequisites

In this section we list the software and hardware that was used during the tests of different tools for

scanning Docker images. There is also an explanation regarding the selection of tools to test and the

selection of the images to use the tools on.

3.2.1 Host Software & Hardware

Virtualization

For testing purposes, we choose to set up virtual machines where Docker images and tools could be

tested in a safe sandbox environment. There are several different tools available for virtualization, but

since our university can offer VMWare for free and it is a well-documented and tested solution for

virtualization, VMWare was chosen as the platform for running virtual machines.

Host

Ubuntu 20.04.4 LTS OR Ubuntu 21.10

Kernel: 5.13.0-40-generic

CPU: 2 x Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz

Memory: 6GB OR 8GB

Docker software

Docker version 20.10.7, build 20.10.7-0ubuntu5~20.04.2

Docker-compose version 1.25.0, build unknown

12

3.2.2 Selection of Tools

The tools selected for evaluation and testing with the images were selected based on the criteria that

they needed to be free of charge, popular, and, preferably, had been used in an earlier study. The free

of charge criteria was decided since trial versions of paid tools often do not contain the fully

functional tool and therefore is not suitable for comparison with a fully functional tool. When

selecting popular tools, we aimed at including tools that were in active use and therefore regularly

updated and maintained. The criteria where the tools preferably have been tested in an earlier study

was chosen because of the possibility to compare the findings in this study with that of an earlier

study of the tool.

As can be seen in section 2.5 Tools, Anchore had been used in earlier studies and was therefore

included in our study. Another tool name Microscanner, that had been used in earlier studies, had

been replaced by Trivy, why Trivy was chosen to be included in our study. Dagda had been

mentioned in earlier studies but was not tested there since it suffered from inaccuracy regarding

vulnerability detection (Javed & Toor, 2021a). Since Dagda provided the most features according to

section 2.5 Tools, and there had been some updates to the tool, we chose to include Dagda in our

study. When looking into Anchore, we found that there was another tool available from Anchore by

the name Grype (Grype, 2022). This tool was included in our study because it was released by the

same company (Anchore) that released Anchore and therefore it would be interesting to see if the

performance was similar. Prior to this study, Docker had announced that their own image scanning

tool by the name Docker Scan now worked with Docker CLI. Since this tool is released and supported

by Docker themselves, it was of interest to see how it performed against other tools. Therefore,

Docker Scan was included in our study.

Although the results from our experiments were analysed and assessed based upon metrics that were

not necessarily the same as in earlier studies, there was still some elements that could be compared.

For example, the accuracy or effectiveness of the tools could be compared to what earlier studies have

discovered.

3.2.3 Selection of Images

When selecting images, we looked at both official and verified images (verified publisher) at Docker

Hub. The verified images were all from a publisher verified by Docker. The images chosen to be used

in this study were subject to the following criteria:

• The image had to be popular, which in this case meant having at least 1 000 000 downloads

from Docker Hub. This was because popular images with a high number of downloads are the

ones with the highest probability of being used.

• There had to be a mix between official and verified images in the sample because not all

recommended images are Docker official images.

For our study we selected 25 random images from the first five pages of recommended images on

Docker Hub. Each downloaded image was documented with image name, tag, and alias. Due to

ethical considerations we chose to show the aliases of the images instead of their names in this study.

13

3.3 Testing Process

3.3.1 Metrics for Assessing Tools

Javed & Toor (2021b) uses a system of metrics to grade the tools that they test, and by that assess the

quality of the tool. The system is based on the number of vulnerabilities found by a tool, the number

of vulnerabilities missed, and a calculation between the two. This also builds on a static analysis of

the images source code itself, if available, and from this a detection hit ratio is calculated. The static

analysis of the source code could be one of the reasons that only java-based images were tested in that

study.

In our study, there was not enough time to conduct an as extensive analysis as in Javed & Toor

(2021b). Therefore, the tools used in this study was compared based on, for example, differences in

number of found vulnerabilities and vulnerability severity. Furthermore, we propose a new way of

investigating the accuracy/effectiveness of a scanning tool. In our study we collected data from

several tools and their scans of 25 popular images from Docker Hub. By calculating the total number

of unique vulnerabilities found by all tools for each image (nTot), and then comparing each tools

number of found unique vulnerabilities for each image (nTool) to the total number of found unique

vulnerabilities for that image (nTot), we could get a measurement of each tool’s share of found

vulnerabilities for each image (pTool). The effectiveness of each tool would then be the total mean

value of that tools share of vulnerabilities found (pTot) for all images scanned (n). The highest

possible value for relative effectiveness would be 1,0 since this would mean that all vulnerabilities

found were also found by that tool. This could be an effective way of investigating the effectiveness

of the scanning tools. The formula for calculating the relative effectiveness is presented below:

i = Image

n = Number of images

pTot = Share of found vulnerabilities (Relative effectiveness)

pTool = Share of found vulnerabilities by a specific tool for a specific image

pSum = Sum of Ptool for all images for a specific tool

nTool = Found vulnerabilities by a specific tool for a specific image

nTot = Total number of found unique vulnerabilities by all tools for a specific image

𝑝𝑇𝑜𝑜𝑙 =
𝑛𝑇𝑜𝑜𝑙

𝑛𝑇𝑜𝑡

𝑝𝑆𝑢𝑚 = ∑ 𝑝𝑇𝑜𝑜𝑙𝑖
𝑛
𝑖=1 (𝑝𝑆𝑢𝑚 = 𝑝𝑇𝑜𝑜𝑙1 + 𝑝𝑇𝑜𝑜𝑙2 + … 𝑝𝑇𝑜𝑜𝑙𝑛)

𝑝𝑇𝑜𝑡  =  
𝑝𝑆𝑢𝑚

𝑛

14

An example calculation is presented below:

Tool 1 has 300, 110, 150 and 400 unique vulnerabilities found for images 1, 2, 3 and 4

Tool 2 has 200, 55, 60 and 200 unique vulnerabilities found for images 1, 2, 3 and 4

Tool 3 has 250, 500, 300 and 70 unique vulnerabilities found for images 1, 2, 3 and 4

Assuming all tools share 50 of the unique vulnerabilities per image:

Tool 1 𝑝𝑆𝑢𝑚 = 1.724 ≈
300

250+150+200+50
+

110

60+5+450+50
+

150

100+10+250+50
+

400

350+150+20+50

Tool 2 𝑝𝑆𝑢𝑚 = 0.902 ≈
200

250+150+200+50
+

55

60+5+450+50
+

60

100+10+250+50
+

200

350+150+20+50

Tool 3 𝑝𝑆𝑢𝑚 = 2.124 ≈
250

250+150+200+50
+

500

60+5+450+50
+

300

100+10+250+50
+

70

350+150+20+50

This gives the final relative effectiveness for each tool as:

Tool 1 pTot ≈ 0.431 (1.724 / 3)

Tool 2 pTot ≈ 0.226 (0.902 / 3)

Tool 3 pTot ≈ 0.531 (2.124 / 3)

3.3.2 Steps for Performing Vulnerability Scans of Images

Steps taken to prepare for the process of testing:

1. Start virtual machine
2. Download and install Docker

a. - sudo apt update

b. - sudo apt install docker

c. - sudo apt install docker-compose (needed for Anchore)

3. Download the set of selected images
a. Docker pull <image name>:<tag>

The “latest” tag was not used because of the possibility that the latest tag can be linked to a new

version of the image if there is a need to scan the image again later. All tags used in this study were

linked to a specific version of that image.

Steps taken for each tool during the process of testing:

(The process for each tool is described in section 3.5 Data collection)

1. Download and install the tool
2. Start the scan of the image
3. Save and document the results of the scan

a. Image name

b. Tool name

c. Vulnerabilities found

15

3.4 Ethical Considerations

Since this study was related to security flaws existent within images that are in active use, it was

important to anonymize those images so to not create a guide to potential exploits. This was

accomplished by selecting some, but not all, of the most popular images and calling them by

pseudonyms such as alias_1 or alias_2. This might be seen as trivial since results in this study should

be replicable and any would be hacker could perform the same scans. However, the process can be

made slightly more tedious by not making it trivial to find exploits in specific public images by

reading the results of an academic dissertation. Therefore, we chose to anonymize the images so that

the results of this study could not be used to identify specific images and their vulnerabilities.

Due to these ethical considerations, the results of this study will not be future-proof and might very

well lose all relevance in the coming years. Though the future-proof aspect can also be said about

some previous studies since some of the tools tested there did not exist anymore at the time of this

study.

3.5 Data Collection

In the following sections, the process of testing the different image scanning tools is described. The

installation and the function/use of the tools is documented and explained. To be able to extract data

from the reports generated from all the tools, we created a python program/tool. This would generate

the desired data regarding found vulnerabilities, their distribution, and occurrence. Together with our

python tool, we used Microsoft Excel to work with different Excel-sheets for presentation of the data.

Some of the tools had built-in functionality to export and save the results to a report in various

formats. Since every chosen tool supported output in json format and that json is easy to work with,

we chose to export the results in json format. Several programs however did not have a built-in

functionality to export the results of their scans to a file, and we had to pass the generated output of

the results to a file manually with the terminal functionality for passing output to a file and saving.

After the reports were saved, we used a python tool that we created to extract information from the

reports and compare the results. The python tool was based on a loop where it checked all reports for

a certain tool, recorded the vulnerabilities found in said report into nested dictionaries that were then

saved into CSV files. The reason for the nested dictionaries was that it made it easy to create a

relation of image-package-vulnerability-count&severity. These CSV files were then imported into a

Microsoft Excel worksheet and further analysed so that the data could be summarized and put into

tables and figures.

16

3.5.1 Docker Scan

Docker scan is the official vulnerability scanning tool for Docker images and comes with Docker

Desktop or can be installed as an individual module for Docker. The installation instructions for

Docker scan are well documented and there is a guide available in the Docker documentation for how

to install it and use it.

To scan an image the following command was entered into the terminal:

- docker scan <image_name>:<tag>

There are additional options available for the command such as --json which gives you the output in

json format and the command looks like this with the option:

- docker scan --json <image_name>:<tag>

The above command was used in this study to gather the vulnerabilities of images obtained from

Docker Hub. Another feature of Docker Scan is that if an image is not locally available, it will attempt

to pull it from Docker Hub if it exists there.

According to the documentation, there seemed to be no way to export the results of the scans to a file

with Docker Scan. The results of the scans could be output to the terminal in json format though, and

thus could be saved to a json file through the terminal with the command:

- docker scan --json <image_name>:<tag> > ~/DockerScan/<report_name>.json

3.5.2 Trivy

Installation was a straightforward install from Github with the command:

- curl -sfL https://raw.githubusercontent.com/aquasecurity/trivy/main/contrib/install.sh | sudo sh -s --

-b /usr/local/bin

To scan an image we entered the command:

- trivy image <image_name>:<tag>

The images were scanned quickly, and the results got printed to the terminal for the user to view.

There was also a summary for each packet that is scanned with the total number of vulnerabilities

found and the number of vulnerabilities for each severity (unknown, low, medium, high, critical).

To save the report from the scan in different formats, for example json or xml, we could use the

commands:

- trivy image -f json -o <report_name>.json <image_name>:<tag>

- trivy image -o <report_name>.xml <image_name>:<tag>

Reports from the scans were saved in both xml and json formats. The xml format was more human

readable while the json format was used as input for our report-analyser tool.

17

3.5.3 Grype

Grype was easy to install with the following command that they recommended at the time of testing:

- curl -sSfL https://raw.githubusercontent.com/anchore/grype/main/install.sh | sh -s -- -b

/usr/local/bin

To scan an image with Grype, the following command was entered into the terminal:

- grype <image_name>:<tag>

There are also additional options such as explicitly defining some parameters, for example the image

being a docker image, by preceding the “image:tag” with docker:

- grype docker:<image_name>:<tag>

When performing a scan of an image, the output to the terminal can be selected by using the following

command:

- grype <image_name>:<tag> -o json

There was no documented way to export the results of the scans to a file with Grype. The results of

the scans could be output to the terminal in json format though, and thus could be saved to a json file

through the terminal with the command:

- grype <image_name>:<tag> -o json > ~/Grype/<report_name>.json

18

3.5.4 Dagda

The first important notice is that Dagda requires at least 6GB of memory to work. Before Dagda could

be downloaded and started, there was a long list of dependencies that had to be downloaded and

installed on the system. Most of the dependencies had to do with python3, but all the dependencies

could be installed through “apt install”, for example:

- sudo apt install python3-requests

When all the dependencies had been installed, mongoDB had to be pulled from Docker Hub and

started with the commands:

- sudo docker pull mongo

- sudo docker run -d -p 27017:27017 mongo

Next step was to download Dagda from Github and unzip. Starting the Dagda service was then a

matter of navigating to the directory where the dagda.py file was located and start it with the

command:

- sudo python3 dagda.py start

The rest of the process had to be done in a second terminal. Firstly, two variables had to be declared

with the commands:

- export DAGDA_HOST='127.0.0.1'

- export DAGDA_PORT=5000

After this the vulnerability database hade to be initialized and updated with the command:

- python3 dagda.py vuln –init

The initialization and update process of the database took very long time the first time (20-30

minutes), and there was no message to alert us that the initialization was complete. The status of the

initialization could be viewed with the command:

- python3 dagda.py vuln –init_status

This command had to be entered manually several times during the initialization of the vulnerability

database before the initialization was complete.

When the database was fully initialized, the scanning process could be started with the command:

- python3 dagda.py check –docker_image <image_name>:<tag>

The scanning process did not alert us when the scan was completed. We had to manually enter the

following command to see the results of the scan:

- python3 dagda.py history <image_name>:<tag>

The status of the output changed from “Analyzing” to a json output with the results when the scan

was complete. We had to enter the above command manually several times before the scan was

complete and the output changed to a json output with the results.

There seemed to be no way to export the results of the scans to a file with Dagda. The results of the

scans were output to the terminal in json format though, and thus could be saved to a json file through

the terminal with the command:

- python3 dagda.py history <image_name>:<tag> > ~/Dagda/<report_name>.json

One of the images could not be scanned as this generated an api-error in Dagda and crashed the

service. We tried several times but could not get Dagda to scan that image.

19

3.5.5 Anchore

Installation started with the download of a YAML file for Docker Compose with the following

command:

- sudo curl -O https://engine.anchore.io/docs/quickstart/docker-compose.yaml

This also showed that Anchore is a container that must be started from the downloaded docker-

compose-file.

To start the Anchore engine, we entered the following command:

- sudo docker-compose up –d

After the container engine had started, the status of the system could be viewed with the command:

- sudo docker-compose exec api anchore-cli system status

Before Anchore could be used, the engine needed to sync the vulnerability data. To see the sync status

of the vulnerability data, we had to enter the command:

- sudo docker-compose exec api anchore-cli system feeds list

This printed the list of vulnerabilities and the last sync date to the terminal.

To scan an image, Anchore first needed to download a separate copy of the image with the command:

- sudo docker-compose exec api anchore-cli image add <image_name>:<tag>

This downloaded the image and started analysing the content. Anchore does not alert the user

automatically when the scan is complete, instead we had to use the following command to initiate a

waiting process that asks the engine every 5 seconds if the scan was completed or not:

- sudo docker-compose exec api anchore-cli image wait <image_name>:<tag>

When the scan was complete, the waiting process stopped and generated information regarding the

scanned image and the “Analysis Status” changed from “analyzing” to “analyzed”.

When the scan was complete, we could see the results with the command:

- sudo docker-compose exec api anchore-cli image content <image_name>:<tag> all

All the found vulnerabilities were printed to the terminal with information regarding severity, name, a

URL to the vulnerability, and more. A downside was that there was no summary regarding found

vulnerabilities, and it seems that it is up to the user to count the found vulnerabilities manually. For

this purpose, we build a short python program that could search through each report and output a

summary with the different severities and found vulnerabilities.

There seemed to be no way to export the results of the scans to a file with Anchore. The results of the

scans could be output to the terminal in json format though, and thus could be saved to a json file

through the terminal with the command:

- sudo docker-compose exec api anchore-cli --json image vuln <image_name>:<tag> all >

<report_name>.json

20

Because the images are downloaded to Anchore separated from images that are downloaded with

“docker pull”, every image also had to be deleted manually within Anchore after every scan. Before

an image could be deleted however, there were auto-initiated subscriptions for that image that had to

be unsubscribed to. After the subscriptions had been unsubscribed, the image could be deleted with

the command:

- sudo docker-compose exec api anchore-cli image del <image_name<:<tag>

The subscriptions could seemingly not be deleted in the version of Anchore used for this study,

although the subscriptions are deactivated and the image is deleted, the subscriptions are still there. It

seems the subscriptions are possible to delete when using the enterprise or UI versions of Anchore

though.

3.5.6 Tool Statistics

Using python, we could extract the data from the reports generated by the tested tools. We could see

the total number of found vulnerabilities by the tools and dive deeper into the reports to see

differences in found vulnerabilities regarding scanned images and packets inside the images. The

extraction of the information from the generated reports gave us the possibility to compare the tested

tools and their results to investigate if there were any differences between them regarding the number,

or type, of vulnerabilities found.

3.5.7 Vulnerability Statistics

With the data collected we could also see which of the found vulnerabilities were the most common.

Because of the way that CVE:s are named, we could extract the year of registration for each found

CVE and use that information to see the number of found CVE-vulnerabilities for each year.

21

4 Results

When conducting the tests with the tools, there was an obvious difference between the tools regarding

the installation and vulnerability scanning process. As can be seen in section 3.5 Data collection,

Docker Scan, Grype, and Trivy had a rather short installation process, while Anchore and Dagda

needed more steps and preparation for installation and setup. The scanning process was started with a

single command when using Docker Scan, Grype, and Trivy. For Anchore and Dagda, there were

some more commands needed for the scanning process to be started and a report being saved.

Anchore also downloaded its own copy of the image that it was told to scan, and that image needed to

be erased from within Anchore.

When extracting and showing the results from the data in the generated reports, we used the python

tool that we had created.

During the tests there were some great differences between the tools regarding vulnerabilities found.

Although there were several images that had zero vulnerabilities according to all tools, the results

were very different. One big difference was that not all tools reported the findings in the same way.

The different severity levels reported by the tools can be seen in table 2. This meant that the results

from the tools could not always be compared to each other in a straight fashion. Though most of the

data reported was similar, some of the tools had other or no severity levels mixed into the report.

Dagda, for example, had different bugs reported in the report. These bugs could have a CVE-

identifier, but sometimes a BugtrackID or some other form of ID could be used as identifier. This

made it somewhat difficult to grade some of the vulnerabilities reported, as there was no grading for

severity available for some of the vulnerabilities found. We labelled these severity levels as “Other”

for Dagda. Dagda also had a section for Malware in the generated reports, though no malware was

found in the scanned images.

Severity Anchore Dagda Docker Grype Trivy

Negligible 1812 1811

Low 25 14 1922 253 2105

Medium 120 18 2236 546 545

High 164 0 1643 666 606

Critical 21 0 138 101 73

Unknown 134 83 0 302 4

Malware 0

Other 541

Totals 2276 656 5939 3679 3333

Table 2 – Tested tools and their reported total number of vulnerabilities found from scanning the 25 images,

filtered by reported severity level and tool.

22

According to tables 2 & 3, the total results from the scans showed great differences regarding the

number of found vulnerabilities. There was a great difference between Docker Scan that found the

highest number of vulnerabilities (5939), and the rest of the tools. Dagda, that found the lowest

number of vulnerabilities (656), found a considerably lower number of vulnerabilities than the rest of

the tools. There were also great differences between the tools regarding the reported severity levels of

the vulnerabilities found (table 2 & figure 3).

Alias Anchore Dagda Docker Scan Grype Trivy

alias_0 0 0 0 0 0

alias_1 0 0 0 47 23

alias_2 88 3 353 176 170

alias_3 106 4 424 231 225

alias_4 0 0 0 0 0

alias_5 9 0 12 34 8

alias_6 36 56 65 97 28

alias_7 58 59 148 77 76

alias_8 0 0 0 0 0

alias_9 0 4 0 0 0

alias_10 120 59 472 169 75

alias_11 0 0 1 40 0

alias_12 58 59 151 80 79

alias_13 74 59 199 102 98

alias_14 89 5 375 187 182

alias_15 380 63 743 519 512

alias_16 60 3 254 134 134

alias_17 84 59 226 114 109

alias_18 664 88 1564 1028 1020

alias_19 58 59 148 78 76

alias_20 0 4 0 22 0

alias_21 17 5 45 21 17

alias_22 0 4 1 16 0

alias_23 0 0 0 0 0

alias_24 375 63 758 507 501

Total 2276 656 5939 3679 3333

Table 3 – Tools and their reported number of found vulnerabilities from the scans, filtered by image and tool.

The name for each image is masked by an alias representing the image name.

23

Figure 3 – Total number of vulnerabilities found for each tool, color-coded by reported severity level.

Upon comparing the total number of vulnerabilities reported by the tools against the total number of

unique vulnerabilities reported by the tools, the results were according to figure 4. The total number

of vulnerabilities found shows all vulnerabilities found including vulnerabilities found several times

in the same image and packet (duplicates). Unique vulnerabilities found in same package shows the

total number of found vulnerabilities, but not counting duplicate vulnerabilities found in the same

package more than once. Unique vulnerabilities found in same image shows the total number of found

vulnerabilities, but only counting unique vulnerabilities per image.

Figure 4 – Number of found vulnerabilities for each tool, color-coded by filtering of the vulnerabilities found.

0

1000

2000

3000

4000

5000

6000

7000

Anchore Dagda Docker Grype Trivy

Vulnerabilities found by Tool and Severity

negligible low medium high critical unknown other

0

1000

2000

3000

4000

5000

6000

7000

Anchore Dagda Docker Grype Trivy

Summary of Found Vulnerabilities by Tool

Vulnerabilities found

Unique vulnerabilities found in same package

Unique vulnerabilities found in same image

24

When investigating the different vulnerabilities reported by the image scanning tools and their

occurrences, the most frequently found vulnerabilities were according to table 4. The most found

vulnerability, CVE-2022-0563, was found 319 times in total by all the tools tested. This number was

significantly higher than the rest of the vulnerabilities found. This number is representing the total

number of CVE-vulnerabilities found by all tools but excluding duplicate CVE-vulnerabilities in the

same package.

Vulnerability Times

Reported

CVE-2022-0563 319

CVE-2018-5709 203

CVE-2004-0971 177

CVE-2021-39537 175

CVE-2022-1304 158

CVE-2010-4756 121

CVE-2018-20796 121

CVE-2019-1010022 121

CVE-2019-1010023 121

CVE-2019-1010024 121

CVE-2019-1010025 121

CVE-2019-9192 121

CVE-2022-29458 121

Table 4 – 14 most found vulnerabilities in descending order, unique vulnerabilities found per tool per image per

package by all tools.

There were some old vulnerabilities present amongst the findings from the image scanning tools.

Some vulnerabilities did not have a CVE ID attached and did not have a date in their ID. Table 5

shows the number of found unique vulnerabilities per package, regarding vulnerabilities with a CVE

ID and without a CVE ID. The total share of vulnerabilities that did not have a CVE ID was

approximately 1 percent and were excluded in table 6 due to lacking easily retrievable dates. The

oldest vulnerabilities found were from 1999, although most of the vulnerabilities were from recent

years, as can be seen in table 6 and figure 5.

Vulnerabilities Anchore Dagda Docker Scan Grype Trivy

With CVE 2258 626 1336 3527 3330

Without CVE 6 27 16 68 3

Table 5 – Found unique vulnerabilities per package. CVE and non-CVE.

25

Year Anchore Dagda Docker Scan Grype Trivy Total

1999 2 0 0 2 0 4

2000 0 0 0 0 0 0

2001 8 0 2 8 8 26

2002 0 0 0 0 0 0

2003 24 0 6 24 24 78

2004 59 0 12 59 58 188

2005 35 20 16 35 35 141

2006 1 41 0 1 0 43

2007 81 40 36 81 81 319

2008 40 11 12 40 40 143

2009 5 60 1 5 2 73

2010 65 11 28 65 65 234

2011 73 43 39 73 73 301

2012 10 1 3 10 10 34

2013 63 27 33 66 64 253

2014 14 83 4 14 12 127

2015 23 162 12 32 24 253

2016 98 93 64 121 119 495

2017 225 1 116 230 228 800

2018 278 10 97 313 305 1003

2019 321 8 175 451 440 1395

2020 98 0 146 302 270 816

2021 347 12 333 931 875 2498

2022 388 3 201 664 597 1853

Table 6 – Found CVE-vulnerabilities by year and tool. The values in the tool columns are the sum of unique

CVE IDs per package per year. Total is the sum of the tool columns.

Figure 5 – Total found CVE-vulnerabilities and the year they were registered.

26

Table 7 shows the number of unique vulnerabilities found per image by each tool. At the bottom of

the table the share of unique vulnerabilities found by each tool is displayed (Relative effectiveness).

This number was generated by using the calculation described in section 3.3.1 Metrics for assessing

tools. There is also a mean value presented that calculates the mean value for each image and the total

share mean.

Alias Anchore Dagda Docker Scan Grype Trivy Mean

alias_0 0 0 0 0 0 0

alias_1 0 0 0 43 23 13,2

alias_2 42 3 91 92 92 64,0

alias_3 46 4 103 104 101 71,6

alias_4 0 0 0 0 0 0

alias_5 1 0 4 24 8 7,4

alias_6 27 51 23 41 22 32,8

alias_7 29 54 42 42 41 41,6

alias_8 0 0 0 0 0 0

alias_9 0 4 0 0 0 0,8

alias_10 63 54 71 81 62 66,2

alias_11 0 0 1 19 3 4,6

alias_12 30 54 45 45 44 43,6

alias_13 38 54 62 62 59 55,0

alias_14 43 5 88 89 87 62,4

alias_15 178 58 197 294 289 203,2

alias_16 32 3 70 70 70 49,0

alias_17 35 54 51 52 49 48,2

alias_18 220 78 257 354 349 251,6

alias_19 29 54 42 43 42 42,0

alias_20 0 4 0 17 5 5,2

alias_21 9 5 13 13 9 9,8

alias_22 0 4 1 14 1 4

alias_23 0 0 0 1 1 0,4

alias_24 175 58 184 281 276 194,8

Share 0,24 0,23 0,38 0,61 0,47 0,39
Table 7 – Number of unique vulnerabilities found per image and tool. Total share regarding found

vulnerabilities at the bottom (Relative effectiveness).

27

Table 8 shows the results from the scans of an image with a pre-known set of vulnerabilities. The digit

“1” marks if the tool found the vulnerability and the digit “0” marks if the tool did not find the

vulnerability. The row at the bottom of the table is the share of vulnerabilities found by each tool.

Vulnerabilities Anchore Dagda Docker Scan Grype Trivy

CVE-2014-4877 1 1 1 1 1

CVE-2015-1038 0 0 0 0 0

CVE-2016-3170 0 0 0 0 0

CVE-2016-3169 0 0 0 0 0

CVE-2016-3168 0 0 0 0 0

CVE-2016-3164 0 0 0 0 0

CVE-2016-3163 0 0 0 0 0

CVE-2016-3092 1 1 1 1 1

CVE-2013-4590 1 1 0 1 0

CVE-2014-0119 1 1 1 1 1

CVE-2014-0099 1 1 1 1 1

CVE-2014-0096 1 1 1 1 1

CVE-2014-0075 1 1 1 1 1

CVE-2016-3956 1 0 0 1 1

CVE-2016-2216 0 0 0 0 0

CVE-2016-2086 0 0 0 0 0

CVE-2014-7187 0 0 0 0 0

CVE-2014-7186 0 0 0 0 0

CVE-2014-7169 0 0 0 0 0

CVE-2014-6278 0 0 0 0 0

CVE-2014-6277 0 0 0 0 0

CVE-2014-6271 0 0 0 0 0

CVE-2016-3610 1 0 1 1 1

CVE-2016-3606 1 0 1 1 1

CVE-2016-3598 1 0 1 1 1

CVE-2016-3587 1 0 1 1 1

CVE-2016-3550 1 0 1 1 1

CVE-2016-3508 1 0 1 1 1

CVE-2016-3500 1 0 1 1 1

CVE-2016-3485 0 0 0 0 0

Share 0,5 0,23 0,43 0,5 0,47
Table 8 – Results from the scans of an image with a pre-known set of vulnerabilities.

28

5 Discussion

5.1 Discussion of the Results

Some of the tools tested had a very complex setup- and run-process. These tools were very prone to

errors and were not perceived as user-friendly. Dagda was one such tool, that had a very complex

setup-process and was very prone to errors during the setup of the tool and scanning of images.

Overall, Grype, Trivy and Docker Scan was perceived as the most user-friendly tools to work with,

with a slight edge in favour of Grype and Trivy. This was because they did not need the user to login

to any account or install any dependencies or other actions prior to running the tool. All that was

needed for us to do was to install Grype and Trivy, then download the desired image and start the

scanning process. Trivy alerted us when the scan was complete and did have the option to save the

generated report in various formats, something that all other tools missed.

Regarding the reports generated by the tools, there was some difference expected. Surprisingly, most

reports generated by the tools had a high amount of similarity and was mostly easy to work with when

extracting information. Again, Dagda marked itself as a little different than the other tools. Dagda had

a more complex report where the desired information was not always in the same place. Dagda did

not always report severity-level for all CVE-vulnerabilities, whereas the severity-level for a

vulnerability could not always be retrieved.

The different severity-levels reported and the number of vulnerabilities for each severity-level

differed between the tools (table 2 & figure 3). This is of course a result of the tools reporting a

different number of found vulnerabilities. There is however a slight disturbance here. We noticed that

some of the tools reported different severity-levels for duplicate vulnerabilities on several occasions.

This meant that the same vulnerability could be reported with, the most extreme found, a severity

level spanning from “low” to “critical”. This was perceived by us as an odd behaviour since the

vulnerabilities we looked up had a fixed severity-level. This could be due to the tools using multiple

different sources for their vulnerability data, but the same severity should not be able to obtain such

an extreme spread in severity-level.

When looking at Anchore and Grype, we could see that the “negligible” and “low” severities roughly

correspond to the “low” severities reported by Trivy. This could be the result of Anchore and Grype

being the only tools reporting the “negligible” metric for severity and that the “negligible” metric

could be translated to “low”. Docker Scan, Grype, and Trivy reported a considerably higher number

of vulnerabilities with a severity-level of “high” and “critical” compared to Anchore and Dagda.

When the total number of vulnerabilities found by the tools was examined, there was a big difference

between the tools, as seen in tables 2 & 3. Docker Scan found 5939 vulnerabilities in total, as

compared to Grype that found the second highest number with 3679 vulnerabilities and Trivy that

found 3333 vulnerabilities. Remarkable here was that Dagda, the tool that seemed to have the highest

potential when looking into the capabilities of the different tools in section 2.5 Tools, reported only

656 vulnerabilities found in total. This is a great difference in found vulnerabilities that generates

some thought as to how there could be such a great difference among the tools regarding the total

number of found vulnerabilities. We could also see that there was a considerable difference between

Anchore and Grype regarding the number of found vulnerabilities although they are from the same

company. This could be due to the fact that Grype is a newer tool than Anchore or that the company

put more effort into Grype. When looking at the tools in section 2.5 Tools, there was no noticeable

difference between the tools.

29

Upon examining the number of duplicate vulnerabilities reported by each tool, there was some

clarification to the high number of total vulnerabilities found by Docker Scan. With the term

“duplicate”, we mean a vulnerability that has been found several times in the same image and

package. When looking at figure 4, we could see that there were some interesting patterns regarding

total vulnerabilities found and unique vulnerabilities found. When inspecting the number of

vulnerabilities found, we could see that, for example, Docker Scan had a great difference in the

number of total vulnerabilities found compared to the number of total package-unique vulnerabilities

found. With total vulnerabilities found, we mean all vulnerabilities found when scanning the images.

With total package-unique vulnerabilities found, we mean the total number of vulnerabilities found

when not counting vulnerabilities found several times in the same package in the same image more

than once per package.

Docker Scan showed itself to report a high number of duplicate vulnerabilities and at most we could

find the same CVE reported 118 times in the same package. The other tools did not show this pattern

and had a rather small difference between total and unique vulnerabilities found. Grype and Trivy had

the highest number of unique vulnerabilities found together with a rather small difference in total and

unique vulnerabilities found. Dagda had similar small differences as the other tools but had an overall

considerably lower number of vulnerabilities found.

When investigating the total number of found vulnerabilities and the year they were registered, we

could see that most vulnerabilities found were from recent years (tables 4 & 5). The highest number

of vulnerabilities found were from 2021, with 2022 as the year with the second highest number of

found vulnerabilities. This could hint at 2022 will soon pass 2021 regarding found vulnerabilities as

2022 was barely mid-way though when this study was conducted. Vulnerabilities from earlier years in

images will hopefully decrease as the images are updated. The number of vulnerabilities reported per

year did only count vulnerabilities with a CVE ID. As can be seen in table 5, the total number of

reported unique vulnerabilities per package that did not have a CVE ID was approximately 1 percent.

These vulnerabilities were different bugs that did not have a CVE ID attached to them.

The vulnerability found the highest number of times was CVE-2022-0563, which has the current

description from https://nvd.nist.gov/vuln/detail/CVE-2022-0563:

“A flaw was found in the util-linux chfn and chsh utilities when compiled with Readline support. The Readline

library uses an "INPUTRC" environment variable to get a path to the library config file. When the library cannot

parse the specified file, it prints an error message containing data from the file. This flaw allows an

unprivileged user to read root-owned files, potentially leading to privilege escalation. This flaw affects util-linux

versions prior to 2.37.4.”

The other vulnerabilities that were found a high number of times were from mostly recent years,

except for CVE-2004-0971 that is significantly older than the other most found vulnerabilities. CVE-

2004-0971 has the following description from https://nvd.nist.gov/vuln/detail/CVE-2004-0971:

“The krb5-send-pr script in the kerberos5 (krb5) package in Trustix Secure Linux 1.5 through 2.1, and possibly

other operating systems, allows local users to overwrite files via a symlink attack on temporary files.”

It was not anticipated by us that we would see such an old vulnerability among the vulnerabilities

found the highest number of times. This could mean that this vulnerability is in a sensitive part of the

package that is hard to update or re-write. We have not been able to dive deeper into this subject

though.

https://nvd.nist.gov/vuln/detail/CVE-2022-0563
https://nvd.nist.gov/vuln/detail/CVE-2004-0971

30

When using our formula for calculating the relative effectiveness of each tool, we found some

interesting results (table 7). When looking at the total number of unique vulnerabilities reported by

the tools, we found that Docker Scan that had the highest total number of found vulnerabilities

(including duplicates), did not score well regarding found unique vulnerabilities in the images. Docker

Scan had a relative effectiveness of 0,38, which translates to that approximately 38 percent of the total

reported unique vulnerabilities were also found by Docker Scan. On the other hand, Grype managed

the highest score with a relative effectiveness of 0,61, which translates to that approximately 61

percent of the total reported unique vulnerabilities were also found by Grype. The mean value of

relative effectiveness among the tested tools was 0,39, which puts Grype (0,61) and Trivy (0,47) at a

rather high level of relative effectiveness compared to the other tools tested. Dagda (0,23) and

Anchore (0,24) were the tools that had the lowest relative effectiveness score and they scored

considerably lower than the rest of the tested tools.

When comparing our results to an earlier study (Javed & Toor, 2021b), we could see that they

concluded that the highest-ranking tool in their study could miss approximately 34 percent of the

vulnerabilities in OS-packages when scanning an image. In our study, the tool with the highest

effectiveness score could miss approximately 39 percent of the vulnerabilities in both OS and non-OS

packages when scanning an image. In Javed & Toor (2021b), Anchore was the tool that they

concluded missed the least number of vulnerabilities with approximately 34 percent of the

vulnerabilities missed. In our study, Anchore got a relative effectiveness of 0,24, which translates to

that Anchore could miss approximately 76 percent of the vulnerabilities when scanning an image.

Notable is that Javed & Toor (2021b) only scanned OS packages, while we, in this study, scanned

both OS and non-OS packages.

We also scanned an image where there was a pre-known set of 30 vulnerabilities to investigate how

well the different tools could find the pre-known vulnerabilities. As can be seen in table 8, none of the

tools could find all the pre-known vulnerabilities. Grype and Anchore found 50 percent of the pre-

known vulnerabilities while Trivy found approximately 47 percent and Docker Scan found

approximately 43 percent. Dagda scored considerably lower than the rest of the tools with only

approximately 23 percent of the pre-known vulnerabilities found. This also corresponds to our

calculated relative effectiveness of the tools, where Grype had the highest relative effectiveness and

Dagda had the lowest relative effectiveness.

31

5.1.2 Are there any clear differences between the number of vulnerabilities found by

different image vulnerability scanning tools?

There was a significant difference between the tested tools regarding found vulnerabilities. Docker

Scan found a considerably higher total number of vulnerabilities than the other tools and Dagda found

by far the lowest total number of vulnerabilities. When filtering the found vulnerabilities to exclude

duplicate vulnerabilities from the same package, we could see that Docker Scan had dropped

considerably and was passed by Grype and Trivy regarding the number of found vulnerabilities.

Docker Scan was the only tool that showed this characteristic. All the other tools sustained roughly

the same number of found vulnerabilities when excluding duplicates from the same package. Why

Docker Scan reports such a high number of duplicate vulnerabilities for packages is unclear to us, but

it is an aspect that needs to be studied further to fully understand the great differences in the number

of found/reported vulnerabilities.

Grype and Trivy had similar results regarding the number of found vulnerabilities and did not show

the considerable drop in found vulnerabilities, as Docker Scan did, when excluding duplicates from

the same package. They both showed great consistency and a high number of found vulnerabilities

throughout. Another remarkable tool was Dagda, that showed great consistency regarding the number

of vulnerabilities found but reported a significantly lower number of found vulnerabilities overall than

the rest of the tools. There could be many reasons for this, the database Dagda uses could be out of

date, or the scanner itself could simply be a bad performing tool.

5.1.3 Are there any differences between the types of vulnerabilities found by different

image vulnerability scanning tools?

There were some differences between the tools when looking at the different types of vulnerabilities

found. The most obvious difference was that the tools did not all report the same severity levels for

the found vulnerabilities. Docker Scan, for example, could report up to 4 different severity-levels for

the same found vulnerability, in the same image. Docker Scan, Grype, and Trivy reported a

considerably higher number of vulnerabilities with a severity-level of “high” and “critical” compared

to Anchore and Dagda. This could be due to Docker Scan, Grype, and Trivy reporting an overall

higher number of found vulnerabilities. However, the most important vulnerabilities for a scanning

tool to find should be the “high” and “critical” vulnerabilities. There is also a possibility that Anchore

and Dagda reported some vulnerabilities to have a lower severity-level than the other tools.

5.1.4 What is the relative effectiveness of different image vulnerability scanning tools?

Using our formula for calculating relative effectiveness, we could see that there were some

considerable differences between the tools (table 7). Grype had a relative effectiveness score of 0,61,

which translates to approximately 61 percent of the vulnerabilities found when scanning images.

Dagda was found to be the tool that had the lowest calculated relative effectiveness with a score of

0,23. This is a considerable difference in relative effectiveness, and it implies that Dagda could miss

approximately 77 percent of the vulnerabilities when scanning images. When we scanned a single

image that had a pre-known set of vulnerabilities, we could see that the results were similar to our

calculated relative effectiveness for the tools. Only Anchore differed slightly more from the relative

effectiveness compared to the other tools.

32

5.2 Usability of the Tested Tools

When testing the image scanning tools, we found out that there was a great difference in useability

between the tools. Dagda and Anchore had to be installed and set-up through several steps and with

several dependencies. They were also prone to errors while setting up and running the scans. This

could lead to users not being able to use the tools or running the tools not as they were intended.

Grype and Trivy was the tools that was by far the easiest to install and use since we only had to install

the scanner tool, download the image, and start the scanning process. Trivy also had the possibility to

select how to save the report and told us when the scan was finished. With all the other tools tested we

had to use Linux built-in functionality to save the terminal output (report) to a json-file.

5.3 Limitations

During the study we used our proposed metric of relative effectiveness to measure the share of unique

vulnerabilities found by a certain tool out of the total number of unique vulnerabilities found by all

tools for a specific image. This was then calculated for all images and a mean value was calculated to

set a relative effectiveness score for each tool. This method has its limitations because it does not

consider the actual “true” value of existing vulnerabilities in an image. It can only be used to calculate

a score of relative effectiveness of a tool and then compare the score of the tools to each other to

achieve an “internal” relative effectiveness among the tools. The calculated relative effectiveness

gives a score for how effectively a tool could find vulnerabilities in scanned images, within a group of

tools that all scanned the same images. This method needs to use data from several tools to be able to

calculate relative effectiveness. The more tools that are used, the more accurate should the relative

effectiveness score be. This is because, for each added tool, the probability should increase that the

found vulnerabilities from the scans more accurately reflect the “real” existing vulnerabilities in the

scanned images.

There is also the possibility that a way to include the reported severity-levels as a metric when

calculating the effectiveness of a scanning tool could give a more accurate measurement and

description of the “real” effectiveness. This would be an area for further study, as the effectiveness

and performance of vulnerability scanning tools is important in the work for increased security.

This study compared several popular scanning tools and their functionality for scanning Docker

Container Images from Docker Hub. Due to the constant evolving nature of the scanning tools and

Docker Hub, the results of this study will only reflect the studied scanning tools and Docker Hub

landscape at the time the study was conducted and for a short time thereafter. The study can be

replicated but the results will most likely differ due to updated tools or dependencies. The images

where selected with specific tags and therefore would be possible to use again, but since the name of

the images was chosen to be set as an alias due to ethical reasons, this has a negative impact on the

reproducibility of the study.

33

6 Conclusion

This study showed that there are considerable differences between tools regarding the number of

found vulnerabilities and how they are reported. There were also great differences between the tools

regarding the number of duplicate vulnerabilities found. Docker Scan found the same CVE multiple

times in the same package in the same image on several occasions and a deeper understanding of this

is needed. Furthermore, there seems to be a great inconsistency between the tools regarding the

severity level as the same CVE could be reported with up to four different severity-levels from for

example Docker Scan. The calculated relative effectiveness score showed that there were considerable

differences regarding relative effectiveness between the tools. Although Grype scored significantly

higher than most of the other tools, Grype could still miss approximately 39 percent of the

vulnerabilities when scanning an image. Dagda that scored the lowest for relative effectiveness could

miss approximately 77 percent of the vulnerabilities when scanning an image.

6.1 Future Work

Container image scanning tools are an important part of securing container images. The tools used for

scanning the images need to be further studied to be able to understand the effectiveness of the tools

and find areas where there is a need for improvement. The different numbers reported regarding

duplicate vulnerabilities needs to be studied further to understand why there is such a great difference

between the tools and what this means. Further studies also need to be conducted regarding the

different severity-levels reported for the same vulnerabilities and where this behaviour comes from. It

would be interesting topic to study and compare the reported severity-levels between scanning tools

and investigate how the reported severity-levels compare to the severity-level registered in the CVE

MITRE database. This could be a part of a tool’s total accuracy, the accuracy of the reported severity-

levels.

34

7 Final Words

One thing that got obvious during the study of Docker images, containers, and scanning tools, is that

there is a need for an easier way of securing the images and containers. It is hard to secure the images

since most of the hardening tools/mechanisms are set up during the start of a container from the

image. The different ways of hardening a container have to be set up as parameters/arguments when

running/starting the container. This in turn leads to the creators of an image not being able to control

the security of the image/container to the extent needed, since the tools or mechanisms needed for that

is not available until the image is used to run a container. This also puts a big piece of the container

security at the hands of the user. For a user new to the container technology, this is an important part

of the security that can easily be forgotten or looked over. Some of the authors provide docker-

compose files where security is set up, which, in many ways, makes the process of securing a

container easier.

Container image scanning tools should be easy to use and should not show the extreme spread in

found vulnerabilities and effectiveness that was seen in this study. There should be a clear

documentation available for a tool regarding the different metrics reported and how duplicates and

different severity-levels should be read and understood. There is a great need for a standard regarding

the grading of vulnerabilities with the aim of vulnerability scanning tools measuring and reporting the

same metrics. This would increase the standard and effectiveness of security-enhancing work related

to container technology. There is already the CVSS-system, but there still seems to be some

disagreement or poor co-operation between different instances regarding the use of a common grading

system. There needs to be a clear severity-grading and the extreme spread for the same severity seen

in this study is confusing and serious regarding the security of container images.

35

References

Ahmad, I., Dimitriou, T., & Sultan, S. (2019). Container Security: Issues, Challenges, and the Road

Ahead. IEEEAccess, 7, 52976-52996.

Aqua Security. (2022). MicroScanner is now deprecated in favour of Trivy. From Github. Retreived

21 April, 2022, from https://github.com/aquasecurity/microscanner

Aqua Security. (n.d.). Container Platforms: 6 Best Practices and 15 Top Solutions. Retrieved May 16,

2022, from https://www.aquasec.com/cloud-native-academy/container-platforms/container-platforms-

6-best-practices-and-15-top-solutions/

Docker. (n.d.). What is a Container? Retrieved April 5, 2022, from

https://www.docker.com/resources/what-container/

Docker docs. (n.d.a). Docker Engine overview. Retrieved May 24, 2022, from

https://docs.docker.com/engine/

Docker docs. (n.d.b). Docker Hub Quickstart. Retrieved May 24, 2022, from

https://docs.docker.com/docker-hub/

Docker docs. (n.d.c). Seccomp security profiles for Docker. Retrieved April 7, 2022, from

https://docs.docker.com/engine/security/seccomp/

Docker docs. (n.d.d). Use Docker Compose. Retrieved May 20, 2022, from

https://docs.docker.com/get-started/08_using_compose/

Docker Newsroom. (n.d.). Docker by the numbers. Docker. Retrieved April 5, 2022, from

https://www.docker.com/company/newsroom/

Forum of Incident Response and Security Teams. (n.d.). Common Vulnerability Scoring System SIG.

Retrieved May 20, 2022, from https://www.first.org/cvss/

Grype. (2022). Grype. From Github. Retreived June 2, 2022, from https://github.com/anchore/grype

Hiter, S. (February 25, 2022). Top Container Software & Platforms 2022. Enterprise Networking

Planet. Retrieved from https://www.enterprisenetworkingplanet.com/guides/container-software/

Javed, O., & Toor, S. (2021a). Understanding the Quality of Container Security Vulnerability

Detection Tools. ArXiv:2101.03844 [Cs]. http://arxiv.org/abs/2101.03844

Javed, O., & Toor, S. (2021b). An Evaluation of Container Security Vulnerability Detection Tools. In

2021 5th International Conference on Cloud and Big Data Computing (ICCBDC) (pp. 95–101).

Association for Computing Machinery. https://doi.org/10.1145/3481646.3481661

Jenna, P. (July 15, 2021). Top Container Software Solutions 2022. Enterprise Storage Forum.

Retrieved from https://www.enterprisestorageforum.com/software/container-software/

https://github.com/aquasecurity/microscanner
https://www.aquasec.com/cloud-native-academy/container-platforms/container-platforms-6-best-practices-and-15-top-solutions/
https://www.aquasec.com/cloud-native-academy/container-platforms/container-platforms-6-best-practices-and-15-top-solutions/
https://www.docker.com/resources/what-container/
https://docs.docker.com/engine/
https://docs.docker.com/docker-hub/
https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/get-started/08_using_compose/
https://www.docker.com/company/newsroom/
https://www.first.org/cvss/
https://github.com/anchore/grype
https://www.enterprisenetworkingplanet.com/guides/container-software/
http://arxiv.org/abs/2101.03844
https://doi.org/10.1145/3481646.3481661
https://www.enterprisestorageforum.com/software/container-software/

36

Lin, C., Nadi, S., & Khazaei, H. (2020). A Large-scale Data Set and an Empirical Study of Docker

Images Hosted on Docker Hub. 2020 IEEE International Conference on Software Maintenance and

Evolution (ICSME), 371–381. https://doi.org/10.1109/ICSME46990.2020.00043

Man7.org. (August 27, 2021a). capabilities(7)—Linux manual page. Retrieved April 8, 2022, from

https://man7.org/linux/man-pages/man7/capabilities.7.html

Man7.org. (August 27, 2021b). cgroups(7)—Linux manual page. Retrieved April 7, 2022, from

https://man7.org/linux/man-pages/man7/cgroups.7.html

Man7.org. (August 27, 2021c). namespaces(7)—Linux manual page. Retrieved April 7, 2022, from

https://man7.org/linux/man-pages/man7/namespaces.7.html

Man7.org. (August 27, 2021d). seccomp(2)—Linux manual page. Retrieved April 8, 2022, from

https://man7.org/linux/man-pages/man2/seccomp.2.html

Martin, A., Raponi, S., Combe, T., & Di Pietro, R. (2018). Docker ecosystem – Vulnerability

Analysis. Computer Communications, 122, 30–43. https://doi.org/10.1016/j.comcom.2018.03.011

Matt, C. (October 7, 2021). Docker Index Shows Momentum in Developer Community Activity.

Docker. [Blogpost] https://www.docker.com/blog/docker-index-shows-surging-momentum-in-

developer-community-activity-again/

Moby. (2022). The Moby Project. [Go]. Retrieved April 8, 2022, from

https://github.com/moby/moby/blob/5f17312653c3e4dc5474f86692b09f06262a1ebd/oci/defaults.go

Mullinix, S. P., Konomi, E., Townsend, R. D., & Parizi, R. M. (2020). On Security Measures for

Containerized Applications Imaged with Docker. ArXiv:2008.04814 [Cs].

http://arxiv.org/abs/2008.04814

NIST. (n.d.). Computer Security Resource Center. Retrieved May 20, 2022, from

https://csrc.nist.gov/glossary/term/vulnerability

PhoenixNAP. (October 31, 2019). Docker Image VS Container: What is the difference? Retrieved

from https://phoenixnap.com/kb/docker-image-vs-container

Prevasio. (2020). Operation Red Kangaroo. Retrieved May 24, 2022, from https://knowledge-

base.prevasio.io/pdf.html?file=Red_Kangaroo.pdf

Reeves, M., Tian, D. J., Bianchi, A., & Celik, Z. B. (2021). Towards Improving Container Security by

Preventing Runtime Escapes. 2021 IEEE Secure Development Conference (SecDev), 38–46.

https://doi.org/10.1109/SecDev51306.2021.00022

Shen, Y., & Yu, X. (2020). Docker container hardening method based on trusted computing. Journal

of Physics: Conference Series, 1619, 012014. https://doi.org/10.1088/1742-6596/1619/1/012014

Software Testing Help. (April 4, 2022). Top 10 Best Container Software in 2022. Retrieved from

https://www.softwaretestinghelp.com/container-software/

The MITRE Corporation. (n.d.). About the CVE Program. Retrieved May 5, 2022, from

https://www.cve.org/About/Overview

https://doi.org/10.1109/ICSME46990.2020.00043
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man2/seccomp.2.html
https://doi.org/10.1016/j.comcom.2018.03.011
https://www.docker.com/blog/docker-index-shows-surging-momentum-in-developer-community-activity-again/
https://www.docker.com/blog/docker-index-shows-surging-momentum-in-developer-community-activity-again/
https://github.com/moby/moby/blob/5f17312653c3e4dc5474f86692b09f06262a1ebd/oci/defaults.go
http://arxiv.org/abs/2008.04814
https://csrc.nist.gov/glossary/term/vulnerability
https://phoenixnap.com/kb/docker-image-vs-container
https://knowledge-base.prevasio.io/pdf.html?file=Red_Kangaroo.pdf
https://knowledge-base.prevasio.io/pdf.html?file=Red_Kangaroo.pdf
https://doi.org/10.1109/SecDev51306.2021.00022
https://doi.org/10.1088/1742-6596/1619/1/012014
https://www.softwaretestinghelp.com/container-software/
https://www.cve.org/About/Overview

37

VMware. (n.d.). What is a Hypervisor? Retrieved May 17, 2022, from

https://www.vmware.com/topics/glossary/content/hypervisor.html

Wenhao, J., & Zheng, L. (2020). Vulnerability Analysis and Security Research of Docker Container.

2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education

(ICISCAE), 354–357. https://doi.org/10.1109/ICISCAE51034.2020.9236837

Yasrab, R. (2021). Mitigating Docker Security Issues. ArXiv:1804.05039 [Cs].

http://arxiv.org/abs/1804.05039

Zerouali, A., Mens, T., & De Roover, C. (2021). On the usage of JavaScript, Python and Ruby

packages in Docker Hub images. Science of Computer Programming, 207, 102653.

https://doi.org/10.1016/j.scico.2021.102653

https://www.vmware.com/topics/glossary/content/hypervisor.html
https://doi.org/10.1109/ICISCAE51034.2020.9236837
http://arxiv.org/abs/1804.05039
https://doi.org/10.1016/j.scico.2021.102653

