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Abstract: To identify hygrothermal transfer patterns of exterior walls is a crucial issue in the design,
assessment, and construction of buildings. Temperature and relative humidity, as sensor monitoring
data, were collected from the outside of the wall to interior bamboo and wood composite sheathing
over the year in Huangshan Mountain District, Anhui Province, China. Combining the machine
learning method of reservoir computing (RC) with agglomerative hierarchical clustering (AHC), a
novel clustering framework was built for better extraction of the characteristics of hygrothermal
transfer on the time series data. The experimental results confirmed the hypothesis that the change in
the temperature and relative humidity of the outside of the wall (RHT12) dominated the change of
the interior sheathing (RHT11). The delay time between two adjacent peaks in temperature was 1
to 2 h, while that in relative humidity was 1 to 4 h from the outside of the wall to interior bamboo
and wood composite sheathing. There was no significant difference in temperature peak delay time
between April and July. Temperature peak delay time was 50 to 120 min. However, relative humidity
peak delay time was 100 to 240 min in April, whereas it was 20 to 120 min in July. The impact formed
a relatively linear relationship between outdoor temperature and relative humidity peak delay time.
The hygrothermal transfer patterns were characterized effectively by the peak delays. The discovery
of the hygrothermal transfer patterns for the bamboo and wood composite walls using the machine
learning method will facilitate the development of energy-efficient and durable bamboo and wood
composite wall materials and structures.

Keywords: machine learning; hygrothermal performance; transfer patterns; bamboo and wood
composites; sheathing; exterior wall

1. Introduction

Hygrothermal performance of exterior wall is a crucial issue in the design, assessment,
and construction of energy-efficient buildings [1]. Because exterior wall assembly is an
important part of the building envelope, its hygrothermal transfer patterns are closely re-
lated to building performance, including the building energy consumption [2,3], structural
material corrosion resistance [4], comfort and health [5], and durability of materials [6].
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When designing a building, it is necessary to conduct hygrothermal design and perfor-
mance prediction for the exterior walls according to the climatic conditions of the building
environment [7]. Consequently, developing hygrothermal transfer patterns for the build-
ings will support not only the architectural design but also a reasonable estimate of the
building for life and maintenance.

To this end, sensor-based monitoring technology is used to efficiently collect the
monitoring data of hygrothermal performance for a target building [8]. With a set of
sensors installed at the different interfaces of the composite walls as a long-term field
monitoring system [9–11], the data on temperature and relative humidity are collected to
assist in continuously assessing hygrothermal performance of exterior walls in the field.
The goal of the research on hygrothermal transfer patterns is to support the durability
design of bamboo and wood composites walls so that this biomass building material can
be used more sustainably in the future [12].

The prediction methods of hygrothermal performance mainly include theoretical
models, software simulation, and machine learning. Developing models of hygrothermal
prediction has been a research topic since the mid-20th century, and research on hygrother-
mal prediction in walls has focused on the development of simplified theoretical models
based on certain assumptions about wall structure and materials, resulting in tractable
physical models to solve hygrothermal problems [13–16]. Phillip and De Vries developed
a hygrothermal prediction model based on the theory of soil moisture movement under
temperature gradients [13]. Luikov proposed one-dimensional hygrothermal prediction
governing equations, which more realistically reflect the hygrothermal transfer process in
porous media [14]. To solve the discontinuity problem of wet capacity, many scholars have
modified the Luikov model and used other driving potentials to replace wet capacity. For ex-
ample, Pedersen used capillary pressure as driving potential [15] and Künzel used relative
humidity as driving potential [16]. Heat transfer generally used temperature as the driving
potential, while moisture transfer used many types of driving potentials, such as water
vapor partial pressure, steam content, relative humidity, capillary pressure, and air mois-
ture content. If the driving potential were different, the moisture transfer coefficient and
other aspects would be quite different consequently. Although these models have relative
limitations, the underlying logic is based on the same principles. Hygrothermal prediction
models combine heat, moisture, and air transport through different mathematical equa-
tions, namely joint conservation of energy, conservation of mass, and conservation of
momentum [17].

With the gradual maturity of the theoretical model of hygrothermal prediction, based
on those theoretical models, hygrothermal prediction simulation software WUFI has been
developed and widely used [18]. It has been proven that WUFI can be used in a wide range
of building materials, such as lightweight timber-frame [19], cross-laminated timber [20],
and bamboo-wood composite materials [21]. The physical parameters, such as water
vapor diffusion resistance coefficient, heat transfer coefficient, and vacuum saturated water
content, are used in the software to characterize hygrothermal dynamic variation, including
moisture content, mold growth risk, and the building’s energy consumption of biochar-
mortar composites [22]. Huang et al. studied the hygrothermal assessment of bamboo
and wood envelope structures in different climatic zones using the WUFI program [23,24].
When bamboo is used as an envelope material, it has strong heat storage, vapor resistance,
and weak heat transferability, which is suitable for use in hot and temperate regions.
Therefore, hygrothermal transfer patterns need to be discovered and identified through the
monitoring data analysis of bamboo composites wall.

However, few works have been done on the deep investigation of the hygrothermal
transfer mechanism, particularly through big data analysis methods. Using the machine
learning method to learn system behavior from observation data is an effective choice [25].
The artificial neural network (ANN) was widely used among several machine learning
technologies because it has high precision to capture any physical process’s nonlinear and
complex underlying characteristics. In many fields, artificial neural networks have been
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used successfully [26,27]. Neural networks have also played their advantages in building
simulations. For example, Taffese et al. [4] used the NARX recurrent neural network
structure and proposed a model to predict the hygrothermal performance of concrete with
low error. The hygrothermal response of building components is transient and highly
nonlinear. Astrid et al. [28–30] developed a meta-model to replace the hygrothermal model,
and hygrothermal time series such as temperature, humidity, and moisture content can be
directly predicted. The network reliably evaluated the future damage risks of walls and
calculated the hygrothermal performance of 96 types of wood-frame walls.

Nowadays, machine learning methods have been widely applied to the construction
fields. However, there is still a lack of sufficient applications to the hygrothermal transfer
patterns based on the monitoring data from the sample buildings. Agglomerative hier-
archical clustering (AHC) is one of the most popular clustering techniques in machine
learning which provides a nice visualization tool, the dendrogram, where the dataset struc-
ture is explored and well understood. In addition, to tackle the clustering of multivariate
time series (MTS) data, a novel approach, reservoir computing (RC), was proposed by
Bianchi et al. [31]. RC generates MTS representations with an unsupervised procedure,
which is called reservoir model space (RMS). The RMS can grasp the dynamic structure of
MTS that is presented as data input, of which the outputs called the MTS representations to
represent the input time series from the sequence of reservoir’s states. The representations
were then used for AHC. However, it has not been verified whether these methods can
extract hygrothermal transfer characteristics on time series data.

It is well known that the moisture content of the material is affected by the temperature
and relative humidity of the interface layer of the wall, which is caused by the hygrothermal
transfer of the building wall. Then, the major impact on the life of the building materials
comes from the moisture and heat in nature. In this paper, the goal was to reveal the
hygrothermal transfer patterns from the outside of the wall to interior wood and bamboo
composite sheathing by analyzing the monitored data of temperature and relative humidity
in the field. Firstly, a basic assumption is proposed that, given a strong change and impact
of the temperature and relative humidity from the outside of the wall, the temperature and
relative humidity interior of the wall will change accordingly. This change in temperature
and relative humidity from the outside to the interior of the wall is caused by the hygrother-
mal transfer. Secondly, a certain time is required for the hygrothermal transfer from the
outside to the interior of the wall. If it can be shown that any change in the temperature
and relative humidity of the outside of the wall causes a corresponding change in the
temperature and relative humidity of the interior wall, there is a hygrothermal transfer
from the outside to the interior of the wall. An obvious way of proving this is to check
the data on the temperature and relative humidity within a given day. Two questions
need to be answered. The first one is if the two peak values can be monitored by two
adjacent sensors, leading to a time difference between the two peak values for a given
day. Another one is naturally in which direction, i.e., from the outside to the interior of
the wall or the opposite, and for how long the hygrothermal transfer lasts, i.e., the peak
delay time. If peak delay direction and delay time can be determined, then the hypothesis
of the hygrothermal transfer pattern is valid, and the hygrothermal transfer pattern can be
further quantified using the peak delay time.

Therefore, in this paper, combining the machine learning method of RC with AHC,
a novel clustering framework was built for better extraction of the characteristics of hy-
grothermal transfer on the time series data. The existence of the hypothesis was proved.
The direction of the hygrothermal transfer was determined. Peak delay times and the
impact of the temperature on the relative humidity peak delay time were obtained to
quantitatively reveal the hygrothermal transfer patterns. The research on hygrothermal
transfer patterns is the basis for developing a hygrothermal prediction model based on
the temperature and humidity dataset using machine learning methods in the next step.
The ultimate goal of this research is to discover how and to what degree the environments
(or climates) impact the building materials over a long period and hence to determine
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suitable guidelines of measures to sustain the building materials and prolong the life
of buildings.

2. Experimental Dataset and Visualization
2.1. Description of Test Building and Wall Configuration

The building Hui-style (depicted in Figure 1a) is above Taiping Lake in Huangshan
Mountain district, located in Anhui Province, China [11]. It has a beam and post structure
(Figure 1b) with wood frame and brick walls fixed within the main structure. It is a demon-
stration of the modern Chinese Hui-style residential buildings, which is made of bamboo
and Chinese fir building materials sourced from local forests. The building is completely in
a natural state without heating and air conditioning to study the hygrothermal performance
in the field under the regional climate conditions.
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Figure 1. Test building and wall configuration: (a) the Hui-style demonstration building for the test;
(b) indoor scene of beam and post structure; (c) stud and bamboo-wood sheathing; (d) configuration
and materials. (The pictures in (a–c) were taken by X.W.; (d) was drawn by H.L.).

Wall assemblies were constructed with 40 mm × 90 mm Chinese fir lumber framing
with studs spaced 400 mm (Figure 1c). The wall configuration included manufactured
cladding, sheathing membrane, bamboo and wood composites sheathing, stud, insulation,
and gypsum board (Figure 1d). All assemblies had structural panel sheathing consisting of
11 mm thickness bamboo and wood composites on the exterior of the framing and 10 mm
interior gypsum board, which was finished with emulsion paint. The studs were filled
with fiberglass insulation with an aluminum foil layer. The bamboo and wood composite
sheathing of the exterior wall was covered with a vapor-permeable sheathing membrane to
form the water-resistive barrier.

2.2. Temperature and Relative Humidity Measurements

A measurement system for the exterior wall in the field was established in 2012.
The temperature and relative humidity of interface layers were measured by sixteen Hy-
groClip S3 probes (0.1 ◦C and 0.1% resolution) at programmable 10 min intervals for each
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group (Figure 2). The sensor layout is shown in Figure 2a. The sensors have a temperature
range from −40 ◦C to 60 ◦C and a relative humidity range of 0% to 100%. The sensors accu-
racy for temperature is±0.4 ◦C and for relative humidity is±1.5% at 23 ◦C. The monitoring
data were collected and stored by Campbell’s CR1000 data collector.
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Figure 2. The sensor layout of (a) 2.8m high wall section; (b) RHT11; (c) RHT12; (d) the outside of
the wall.

Temperature and relative humidity sensors (RHT1–RHT16) were installed 300 mm
from the top and bottom plates of the test wall in the different layers [8]. Three groups
of sensors (RHT1–RHT12) were installed in three profiles of the north exterior wall on
the first and second floors. One group of the sensor (RHT13–RHT16) was installed in
one profile of the south exterior wall on the first floor. The data collected by RHT11 and
RHT12 sensors (Figure 2a) in the north exterior wall on the first floor were analyzed in this
paper. The locations of the sensors RHT11 and RHT12 in the field are shown in Figure 2b,c.
The sensor layout of the outside of the wall is shown in Figure 2d. The monitoring data of
sensors RHT11 and RHT12 were analyzed for the whole year 2012, to determine whether
RHT12 dominated RHT11and how to evaluate the strength of the domination.

2.3. Visualization of the Experimental Dataset

The dataset used in this paper was collected from the two adjacent sensors RHT11
and RHT12 over the year 2012. Each sensor provides a pair of values of temperature and
relative humidity. Considering the logging time of each sensor is 10 min, there are in
total 144 observations a day, which means a total of 52,704 observations for the whole
year. T11 and T12 are temperatures of the sensors RHT11 and RHT12. RH11 and RH12 are
relative humidities of the sensors RHT11 and RHT12.

The whole year temperature and relative humidity are shown in Figure 3. Comparing tem-
perature and relative humidity, T11 followed T12 (Figure 3a) closely while RH11 followed
RH12 (Figure 3b) with a much smaller amplitude. Due to the barrier of materials and
construction to heat and moisture, T11 and T12 were different at the same time, and so was
RH11 and RH12. In addition, the drastic changes in temperature and relative humidity
occurred in April and July, and the peak characteristics of temperature and relative humid-
ity were more obvious every day, so the datasets of temperature and relative humidity in
April and July as typical months were analyzed to provide a closer look at the hygrother-
mal transfer patterns to quantitatively characterize the transfer directions and the peak
delay times.
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3. Methodology and Data Analysis
3.1. The Methodology Overview

The research workflow and methods are shown in Figure 4. Firstly, the dataset was
segmented daily, of which the segmentation method is discussed in Section 3.2. Secondly, a
clustering method was conducted on the data segments and the cluster with the most
elements was selected for further analysis to find the general hygrothermal transfer pattern
with better accuracy. The details can be found in Section 3.3. Thirdly, the peak detec-
tion methods were performed on the data segments that fall in the selected cluster to
obtain the timestamp of detected peaks. The peak time differences between the sensor
RHT11 and RHT12 were used as references for hygrothermal transfer through the exte-
rior wall. A detailed explanation of peak detection methods can be found in Section 3.4.
Subsequently, the time differences, namely delays in time, between the peaks of T11 and
T12, RH11 and RH12, were calculated respectively, see Section 3.5. Finally, the hygrothermal
transfer patterns were identified based on the peak delay derived from above.

3.2. Data Segmentation

Through the literal observation of the data of RHT11 and RHT12 over the year 2012,
on most of the days, a “peak” (the maximum value) or a “high plateau” (the interval
of maximum values) appeared in a day, and this observation provided the reasonable
foundation to segment the whole period data into days. The data were split into a unit
of day, i.e., each segment covered the data from hour 0 to hour 24 of a day. Subsequently,
the data were arranged into a three-dimensional array of shapes [N, T, V], where N was
the number of segments (in this case, N = 366), T was the number of observations in each
segment (in this case, T = 24 × 6), and V was the number of variables in each segment (in
this case, V = 4 for T11, T12, RH11, and RH12).
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3.3. Clustering Framework

The clustering analysis is conducted to group the data segments so that the most
representative group can be identified. Due to the data type of collected data being MTS,
a novel approach RC was used in this study to tackle the clustering of MTS. With the
help of the open-source Python library that is associated with the literature, and RMS
configured with the hyperparameters defined in the literature [31], the RMS output the
MTS representations which were then used as the input to the AHC. The basic algorithm of
AHC is straightforward:

• Start with each point in a cluster of its own;
• Compute the proximity matrix;
• Repeat: merge the closest pair of clusters and update the proximity matrix;
• Until there is only one cluster;
• Return the dendrogram.

Here, to compute the proximity matrix, the Euclidean distance was used to calculate
the distance between two clusters. In addition, Ward’s method is used as the linkage
criteria to analyze the variance of clusters, and it is acknowledged as the most suitable
method for quantitative variables [32]. Ward’s method [33] specifying the distance between
two clusters, X and Y, is how much the “error sum of squares” (ESS) will increase after
merging the two clusters into a single one X∪Y. Moreover, it seeks to choose the successive
clustering steps to minimize the increase ∆(X, Y) at each step. Mathematically, the Ward’s
linkage function can be described by the following expression:

∆(X, Y) = ESS(X∪ Y)− (ESS(X) + ESS(Y)), (1)

where ESS(·) is the error sum of squares is described as:

ESS(X) = ∑NX
i=1

∣∣∣xi − 1
NX

∑NX
j=1 xj

∣∣∣2, where |·| is the absolute value of a scalar value or
the norm of a vector.

Eventually, based on the dendrogram, the number of clusters in the hierarchical
algorithm can be obtained by setting a threshold. This threshold can be decided by looking
at the dendrogram. The cluster with the biggest share was selected as the representative for
further analysis, and the identification of hygrothermal transfer patterns was based on the
data segments that fell in the selected cluster. The results of the clustering analysis can be
seen in Section 4.1.
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3.4. Daily Peak Detection and Selection

The peak delays between the adjacent sensors of a day were used as references for
hygrothermal transfer through the exterior wall. Suitable peak detection methods were thus
crucial for the accuracy of this study. Peaks, by definition, were local maxima. Intuitively, to
detect the peaks of daily values of RH11, RH12, T11, and T12, the appropriate maximum
value of RH11, RH12, T11, and T12 needed to be found in each value of the day. However, in
practice, there was usually a plateau (a short period of consecutive reads, see the dashed
lines in Figure 5, with small fluctuation) around the peak. In addition, RH increased again
in the afternoon and sometimes it reached an even higher value than the peak that occurred
in the first half of the day. To overcome these two problems mentioned above, the methods
of detecting the daily peaks of RH11, RH12, T11, and T12 are as follows:
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Method 1: For T11 and T12, firstly find the maximum value xp in the daily data.
Then, given a fluctuation range δ, which is 2% of the magnitude of the difference between
maximum and minimum values in the day, select the data point which occurs the latest in
the time scale as well as its value and is in the range of

[
xp − δ, xp

]
. Finally, the selected

data point
(

tp, xtp

)
, where tp is the timestamp of the identified peak and xtp is the peak

value. The mathematical expression is shown in Equation (2). As a demo, the dots in
Figure 5a are the detected peaks for T12 and T11 on 10 January, respectively.

xtp =
{

xt : xt ∈
[
xp − δ, xp

]
and t = max(t)

}
(2)

Method 2: For RH11 and RH12, to overcome the second problem described above,
firstly a range is defined, say the first half day (i.e., from 00:00 to 15:00), where the peak
is being searched for. Then, apply Method 1 for the peak detection. The mathematical
expression for the detected peak is shown below in Equation (3). As we can see from
Figure 5b, the dots are the detected peaks for RH12 and RH11 on 1 April 2012, respectively.

xtp =
{

xt : xt ∈
[
xp − δ, xp

]
and t = max(t), where t ∈ [00 : 00, 15 : 00]

}
(3)

3.5. Peak Delay Calculation

From the peak detection methods, the timestamp tp of a detected peak for each selected
day and each variable were obtained. Thus, the peak delay between RH12 and RH11 (drh)
was defined as: drh = tp(RH11)i− tp(RH12)i, where i is the ith day. Similarly, the peak delay
between T12 and T11 (dtemp) was defined as: dtemp = tp(T11)i − tp(T12)i. Finally, based on
the distribution of drh and dtemp, the hygrothermal transfer patterns can be identified.

“Percentage of delay” (Tables 1 and 2) refers to the ratio of the number of days that
sensor RHT11 peak value appears later than RHT12 to the total number of days. In addition,
to deliver straightforward and clear information, “Range” refers to a range of time where
the majority of time delay lies, and “Accuracy” is the percentage of the time delay that falls
within the defined “Range”. See Sections 4.2 and 4.3.
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4. Results and Discussion
4.1. Clustering in Relative Humidity Data

The purpose of clustering analysis is to aggregate the daily time series with simi-
lar patterns into the same cluster to identify the general patterns with better accuracy.
Performing the RC and AHC analysis on the preprocessed relative humidity data, the
results are shown in the dendrograms below (Figure 6). The heights of the dendrogram
reflected the distance between the clusters. In this case, the dendrogram showed that the
biggest difference between clusters was when there were two clusters. Therefore, 366 daily
time series were divided into two clusters, where 84 daily time series fell into the first
cluster while 282 daily time series fell into the second cluster. Given that the second cluster
held the largest share, accounting for 77.3% of the total days in the year, the second cluster
was thus selected for analysis to obtain the hygrothermal performance transfer patterns.
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4.2. The Peak Delays in Temperature and Relative Humidity throughout the Whole Year

The corresponding peak detection analysis was conducted on RH12, RH11, T12, and
T11, respectively. The timestamp tp of a detected peak was obtained for each selected
day and each variable. The peak delay times for temperature and relative humidity were
calculated respectively, shown in the histograms in Figure 7, and summarized in Table 1.
The subplot on top of the histogram is a boxplot in Figure 7 which provides a different
statistical representation than the histogram. The five vertical lines, from left to right, on the
boxplot represent the minimum, first quartile, median, third quartile, and maximum of the
dataset, respectively. The results showed that 100% of temperature peak delay was positive,
which meant that, as the rise of outdoor temperature (T12) reached its peak, the temperature
of interior bamboo and wood composite sheathing (T11) also gradually reached its peak,
and the peak of T11 always appeared later than that of T12. In addition, 97.3% of relative
humidity peak delay was positive too, which meant that, as the outdoor relative humidity
(RH12) reached its peak, the relative humidity of interior bamboo and wood composite
sheathing (RH11) also gradually reached its peak, and the peak of RH11 always appeared
later than RH12. The percentage of delay days within a range of delay time was used to
characterize the probability of hygrothermal transfer occurring. Therefore, the direction
of the hygrothermal transfer was from RHT12 to RHT11 for 282 days in the daily time
series dataset. Namely, the assumption of this study in Section 1 that RHT12 dominated
RHT11was confirmed.
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Table 1. Hygrothermal transfer with its peak delays.

Temperature Relative Humidity

Percentage of
Delay Range (min) Accuracy Percentage of

Delay Range (min) Accuracy

100% [60, 120] 82.7% 97.3% [60, 240] 81.3%

The results in Table 1 showed that 82.7% of the temperature peak delay time from T12
to T11 was 60 min to 120 min, while 81.3% of the relative humidity peak delay time from
RH12 to RH11 was 60 min to 240 min. For 282 days of the daily time series dataset in the
process of RHT11 and RHT12 rising and reaching the peak, the percentages of the peak
delay times of the temperature and relative humidity were both higher than 80% within
the above range (Figure 7a,b). Therefore, it can be concluded that the machine learning
method of combining RC with AHC is effective for quantifying the hygrothermal transfer.
The hygrothermal transfer performance can be characterized by the range of the peak
delay time.

4.3. The Peak Delays in Temperature and Relative Humidity in April and July

The data segments in April and July were selected in the cluster, and then the results of
drh and dtemp were shown in Figure 8 and summarized in Table 2. Note that the parameters
in Table 2 are the same as in Table 1. The function of the boxplots in Figure 8 works
the same as in Figure 7. The results showed that 100% peak delay in both temperature
and relative humidity were positive, which once again confirmed that RHT12 dominated
RHT11. The temperature peak delay times from T12 to T11 (Figure 8a,c) both were 50 min
to 120 min in April and July. The relative humidity peak delay time concentrated between
20 min to 120 min in July, whereas it concentrated between 100 min and 240 min in April.

Furthermore, 91.7% of the temperature peak delay time from T12 to T11 was 50 min to
120 min in April (Figure 8a), while 76.0% of the relative humidity peak delay time from
RH12 to RH11 was 100 min to 240 min (Figure 8b). It can also be seen from Figure 8b
that the relative humidity peak delay time in April is very long, and the distribution of
peak delay days is relatively scattered. In addition, 81.5% of the temperature peak delay
time from T12 to T11 was 50 min to 120 min in July (Figure 8c), while 81.5% of the relative
humidity peak delay time from RH12 to RH11 was 20 min to 120 min (Figure 8d). It can be
seen from Figure 8b,d that the distribution of the relative humidity peak delay time in July
is different from those in April.
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Table 2. Hygrothermal transfer with its peak delays at different months.

Month

Temperature Relative Humidity

Percentage of
Delay Range (min) Accuracy Percentage of

Delay Range (min) Accuracy

April 100% [50, 120] 91.7% 100% [100, 240] 76.0%

July 100% [50, 120] 81.5% 100% [20, 120] 81.5%

There were ten days of the peak delay in relative humidity from 150 min to 200 min in
April, and there were six days of the peak delay in relative humidity from 0 min to 30 min
in July. Therefore, it can be concluded that the machine learning method of combining RC
with AHC also accurately and effectively identified how many days happens long-term or
short-term hygrothermal transfer in month. Identifying data characteristics accurately will
be more helpful in determining the scope of application of the hygrothermal transfer model.

In addition, observing the range of temperature peak delay times in April and July,
there was no significant difference. However, there was a significant difference in the
range of relative humidity peak delay time in April and July. The results showed that
the heat transfer from T12 to T11 was not greatly affected by season, while the moisture
transfer from RH12 to RH11 was relatively slower in the springtime than in the summer-
time. Therefore, by comparing the differences in the relative humidity delay times over
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12 months, the impact of temperature of the outside of the wall on the relative humidity
delay was obtained, which was also important aspects of hygrothermal transfer patterns.

4.4. Impact of Monthly Average Temperature on Relative Humidity Peak Delay Time

Figure 9 shows the distribution of the monthly average relative humidity peak delay
time under the outdoor monthly average temperature (T12) condition in a year. The results
indicated that, as the outdoor monthly average temperature increased, the monthly average
relative humidity peak delay time between RH11 and RH12 decreased. There was a
relatively linear relationship between the outdoor monthly average temperature and the
monthly average relative humidity peak delay time. In addition, the monthly average
relative humidity peak delay time from May to September showed an obvious linear
decreasing trend as the outdoor monthly average temperature increased. This result is very
interesting. The peak delay time of temperature and relative humidity as an important
indicator can be used to look for quantitative characterization of the hygrothermal transfer
patterns, which forms a scientific basis for the analysis of moisture movement and storage
in the bamboo and wood composite wall.
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The monthly average peak delay time between RH11 and RH12 was about three or
four hours in January, February, March, April, and December, but the monthly average peak
delay time between RH11 and RH12 was about one or two hours from May to November.
The results indicated that the wintertime and springtime moisture transfer from RH12 to
RH11 was slow due to the cold and humid climate. The average temperatures of April and
October were close, the same as of March and November, but their relative humidity peak
delay times were significantly different (Figure 9). This means that outdoor temperature is
not the only factor that affects the relative humidity peak delay in the transitional season of
the year. Therefore, it is effective to use the peak delay time to characterize the hygrothermal
transfer patterns.

5. Conclusions

To find out the hygrothermal transfer patterns of a wood and bamboo composite wall
was an initial step toward the study of building construction materials maintenance. To this
end, a scientific assumption was made to determine whether there exists a hygrothermal
transfer of the temperature and relative humidity from the outside of the wall (RHT12)
to interior bamboo and wood composite wall sheathing (RHT11). For the given dataset
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from the two adjacent sensors of RHT11 and RHT 12 over the year 2012, the machine
learning methods of RC and AHC were applied as the explorative analysis approach
to the segmented the dataset. In addition, based on the characteristics of the data, the
peak detection method was developed to obtain the peak delay times of 282 days data of
temperature and relative humidity. The assumption was confirmed by the analysis results
of the datasets, that is, RHT12 dominated RHT11. Furthermore, there was an inevitable time
delay during the hygrothermal transfer from RHT12 to RHT11. The transfer time required
varies but within an interval of 1 to 2 h for temperature and 1 to 4 h for relative humidity.
In addition, there was a relatively linear relationship between the outdoor temperature and
relative humidity peak delay time, indicating a linear contribution of the temperature to
the moisture transfer.

Two innovative research methods have been developed in this study. For the question
of whether the data in the dataset demonstrate a kind of indeterministic features, the
clustering framework system was built which integrated the machine learning method
RC with the classic clustering method AHC. Based on the characteristics of the data, the
peak detection method was developed which can specifically identify an appropriate and
reasonable position of a high plateau (a subset of maxima) of the day to achieve better and
more rational accuracy. These two methods play a vital role in quantitatively elucidating
the properties of hygrothermal transfer. The data in the dataset demonstrate a kind of
indeterministic features. Also because of this indeterministic, identifying a reasonable
peak of the relative humidity curve in a day becomes difficult—not simply the maximum
value of the day’s relative humidity. Furthermore, these innovative methods have laid
a theoretical foundation for the hygrothermal performance models for the exterior wall,
turning the hypothesis proposed in this paper into a basic scientific standing point for
this serious investigation. Quantitative hygrothermal transfer patterns are needed for a
given specific situation with advanced machine learning methods for a complicated form
of hygrothermal transfer affected by regional climates and environments, wall construction
materials, and configurations. There exists not a qualitative universal principle that is
applicable everywhere and generates a general transfer pattern.

Our next study is to quantify the hygrothermal transfer patterns by establishing a
set of rules to compute how much moisture content will be accumulated inside the wall
and stored in the bamboo and wood composites through the exchange of hygrothermal air
between the outside and inside the exterior walls using the data from the sensors ranging on
various spots of the building over years. This quantitative result will be used for comparison
with the theoretic results generated with the simulation by WUFI, and the comparison with
WUFI will expectedly lead to a real estimate of the life cycles of the building materials.
Meanwhile, we will develop a novel data explorative analysis approach based on an
advanced machine learning method, which can better identify the characteristics of the
sample dataset and generate more accurate quantitative hygrothermal transfer patterns.
Looking further ahead, hygrothermal transfer patterns identified will provide guidelines
for the durability design of bamboo, wood, and exterior wall configurations such that the
sustainability of this kind of biomass building material will be maintained in the future.
The efforts will achieve the ultimate goals of regulating the indoor temperature and relative
humidity artificially to make the indoor environment comfortable and wall materials and
structures more energy-efficient and durable.
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