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Gravel road classification based on loose gravel using transfer learning
Nausheen Saeed, Roger G. Nyberg and Moudud Alam

School of Information and Engineering Dalarna University, Borlänge, Sweden

ABSTRACT
Road maintenance agencies subjectively assess loose gravel as one of the parameters for determining
gravel road conditions. This study aims to evaluate the performance of deep learning-based pre-
trained networks in rating gravel road images according to classical methods as done by human
experts. The dataset consists of images of gravel roads extracted from self-recorded videos and
images extracted from Google Street View. The images were labelled manually, referring to the
standard images as ground truth defined by the Road Maintenance Agency in Sweden (Trafikverket).
The dataset was then partitioned in a ratio of 60:40 for training and testing. Various pre-trained
models for computer vision tasks, namely Resnet18, Resnet50, Alexnet, DenseNet121, DenseNet201,
and VGG-16, were used in the present study. The last few layers of these models were replaced to
accommodate new image categories for our application. All the models performed well, with an
accuracy of over 92%. The results reveal that the pre-trained VGG-16 with transfer learning exhibited
the best performance in terms of accuracy and F1-score compared to other proposed models.
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1. Introduction

Gravel roads connect areas of sparse populations and provide
pathways for agricultural and forest goods. Gravel roads are
also considered where the traffic volume is low, where gravel
roads are more economical in comparison to paved roads. In
Sweden, 21% of the public roads are gravel roads owned by
the state, covering over 20 200 km. Besides, 74 000 km of gravel
roads and forest roads of 210 000 km exist owned by the pri-
vate sector (Kans et al. 2020, Saeed et al. 2020). The Swedish
Road Administration (Trafikverket) rates the gravel road con-
dition according to the severity of irregularities (corrugation
and potholes), dust, and loose and gravel cross-section (Alzu-
baidi 2001). This assessment is done during the summertime
when roads are free of snow (Hossein Alzubaidi 2014). Similar
road distresses can be considered in other countries when
assessing the quality of gravel roads. Gravel roads are made
up of layers of soil and aggregates. In Figure 1, the structure
of a gravel road is shown. The durability of gravel roads is
low and requires regular maintenance. Some approaches are
used to improve the safety of gravel roads using environ-
ment-friendly, cost-effective, and sustainable solutions. These
solutions include a well-compacted road surface, a surface
seal that creates a hard water resistance surface, and well-
planned maintenance activities (Albatayneh et al. 2019).

There are various visual gravel road assessment methods
used worldwide that are regulated by the country’s weather
and landscape. Previous studies have shown that visual assess-
ments are unreliable (Nyberg et al. 2015, Nyberg, 2016). There
can be a difference in rating the same road by various experts.
The manual classification of loose gravel is tiresome and
dangerous for the people involved. Therefore, many road

management agencies are shifting to objective, efficient, cost-
effective technological solutions.

Several smartphone applications are available that are
capable of road profiling, such as RoadRoid, RoadSense, etc.
(Forslöf and Jones 2015, Allouch et al. 2017). These appli-
cations use smartphone accelerometers to collect data and
give an overall picture of the road by calculating the inter-
national roughness index (IRI). The IRI obtained from these
applications helps quantify general road roughness. These
applications are cost-effective, but their limitation is that noth-
ing can be inferred about the type of distress causing the road
roughness. Applications that could give more information
about the distress type would benefit road maintenance
agencies.

In 2017, around 600 people died in the United States in
accidents on gravel roads. Most of these accidents were mul-
tiple-vehicle crashes. The hazardous defects include too
much loose gravel, dust impairing visibility, and lack of
traffic signs (Albatayneh et al. 2020). Gravel roads become slip-
pery when the surface contains excessive loose aggregate with
fine aggregate within the crust (Nervis and Nuñez 2019). Loose
gravel can slip under vehicle tires and cause drivers to lose con-
trol when slamming on the brakes or abruptly diverging while
driving on gravel roads (Kanhere 2011). This shows how criti-
cal it is to keep loose gravel conditions monitored and main-
tained timely, not only for a comfortable ride but also for
the safety of the drivers. In this study, one of the artificial intel-
ligence (A.I) application is developed to automatically classify
gravel roads according to the severity of loose gravel on gravel
roads in accordance with the rating scale suggested by the
Swedish Road Administration authority. Such detection
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using A.I can be considered an innovative method to help road
maintenance agencies by quantifying the presence of loose
gravel. This paper used a transfer learning technique to retrain
several pre-train models. VGG-16 is proposed to classify loose
gravel on gravel roads into two major categories.

The rest of this article is organised as follows: first, the lit-
erature review covering related studies is presented. Then
the methodology is presented, discussing data collection and
the dataset, pre-processing of data, transfer learning, CNN,
discriminative learning, and evaluation metrics used in this
study, followed by results and discussion. The article ends
with concluding remarks and references.

2. Literature review

This section will discuss classical road evaluation methods and
studies involving image analysis for road defect detection. The
literature mainly concerns conventional gravel roadmaintenance
methods. Some research studies have been conducted using
automated machine learning approaches for identifying road
defects. Most of these studies focus more on paved roads and
less on unpaved roads (Abulizi et al. 2016, Allouch et al. 2017,
Gorges et al. 2019). There are fewer studies about gravel road dis-
tress identification using artificial intelligence. Therefore, some
studies on paved road defects will also be included here.

For gravel road condition assessment in Sweden, the regu-
lation Gravel Road Assessment (Bedömning av grusväglag) is
laid down by the Swedish Transport Administration (Trafik-
verket). According to this method, the evaluation of gravel
road defects is primarily assessed visually by human inspec-
tors. Only the conditions of cross fall and road edges are objec-
tively evaluated against the threshold for each class. This
objective measurement is not complex and is done by simple
tools, such as a cross-fall metre or a digital metre measuring
the cross-fall (Alzubaidi 1999). Images of the gravel roads
are taken by driving through gravel roads and are accessed
by the experts, comparing them with some standard condition
pictures. Rating for each road helps decision-makers decide
whether a gravel road needs maintenance. Details of the
method can be found in the following reference document
by Trafikverket (Karin Edvardsson, Thomas Lundberg 2015).

Similar visual gravel road assessment methods are used
worldwide. The country’s weather and landscape regulate

them. In some cases, statistical data is collected from vehicles
fitted with specialised instruments that take road surface
measurements. For instance, a laser profiler in Sweden, an
Automated Road Analyzer (ARAN) used in Canada, and a
Road Measurement Data Acquisition system (ROMDAS) are
used in New Zealand for road assessment (Hossein Alzubaidi
2014, Saeed et al. 2020), (Sodikov et al. 2005). These complex
trucks are costly and cannot be used for gravel roads, as one of
the goals of having gravel roads is to keep these pathways econ-
omical. Moreover, road roughness surveys can provide valu-
able overall road conditions concerning the driver’s comfort.
But the surveys do not reflect adequate information to identify
a particular distress type’s existence and intensity (Nervis and
Nuñez 2019).

Applications, such as Roadroid and Roadsense, are avail-
able for smartphones; these applications calculate the overall
road roughness index and map road conditions on maps.
These applications cannot help identify the type of distress
present (Forslöf and Jones 2015, Allouch et al. 2017). As dis-
cussed earlier, conventional automated objective road assess-
ment methods are quite expensive. Therefore, the role of
technology is essential to minimise subjective measurement
and provide cost-effective, efficient distress evaluation, pro-
ductivity, and repeatability.

Past studies show that road defects such as dust, rutting,
wash boarding, or potholes can be identified by applying
machine vision techniques to images and video data. Changes
in colour or texture in these patterns indicate the loss of aggre-
gate from the road surface (Nervis and Nuñez 2019, Rajab et al.
2008, Gopalakrishnan et al. 2017, C. Zhang and Elaksher
2012). In 2003, Patric et al. (Patrick and Foedisch 2003) used
colour-based segmentation to determine the road type as
asphalt, dirt, snow, or gravel-surfaced road. Support vector
machines (SVM) have been compared with artificial neural
networks. SVM performed slightly better than neural net-
works, but this difference has been insignificant. Image coordi-
nates have also been added as an additional feature for model
training to minimise the misclassification of the road as back-
ground. Identifying paved roads through machine vision
algorithms can be easily done as the lane is adequately marked.
Conversely, dirt or gravel roads are hard to identify as they do
not have clear markings. These roads merge with their
surrounding environment during the snow or rain.

Figure 1. Cross-section structure of gravel.
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In 2012, Cord et al. (Cord and Chambon 2012) presented a
method of automatically distinguishing defects on paved
roads, such as grabbing holes and cracks. The process was
based on supervised learning, using AdaBoost. The VisTex
image database and on-road images collected by a dedicated
road imaging system were used. The textural information
was described by a large set of linear and non-linear filters.

In 2012, Zang et al. (C. Zhang and Elaksher 2012) presented
a semi-automated method that utilised images of ruts on gravel
roads by unmanned Aerial Vehicle (UAV) drone. Two images
captured from two different viewpoints are analysed to derive
the 3D information of the identified andmatched feature points;
hence the system is stereo in effect, although it has a monocular
vision at any given point in time. Acquired images were con-
verted to 3D images to measure the depths of these ruts. The
reconstruction process is helped by the relative displacement
of the UAV calculated by two onboard sensors: a Global Posi-
tioning System (GPS) sensor and an inertial measurement
unit. The results were quite close to manual measurements,
but the method’s high complexity is difficult to implement.

In 2019, Albatayneh et al. (Albatayneh et al. 2019) proposed
a simple dust classification algorithm using images taken from
a smartphone application, ‘Roadroid,’ to classify the amount of
dust using proprietary digital Image Processing algorithms. A
Dustometer device was used to validate the proposed algor-
ithm. Dustometer measurements, supported by statistical
analysis, demonstrate that the proposed algorithm achieves
outstanding classification accuracy.

In 2021, Albatayneh et al. (Abu Daoud et al. 2021) validated
the practicality of a deep learning-based image
classifier trained to classify gravel road images according to
the severity level of corrugations present on the gravel road.
Furthermore, the classifier was tested to check applicability
in practice. Images were collected from gravel roads in Lara-
mie County, Wyoming. Corrugation images were evaluated
by visual inspection methods and by the developed classifier.
A confusion matrix showed that the classifier had an accuracy
of 83% in the practical field. According to the study, the
achieved accuracy level is sufficient for the Gravel Roads Man-
agement Systems (GRMS) followed in the USA.

The literature review shows that much research has been
dedicated mainly to overall road roughness and less to identi-
fying distress types for gravel roads. Moreover, addressing the
automation of measuring loose aggregate seems ignored
(Gopalakrishnan et al. 2017, Mednis et al. 2011, Rajab et al.
2008, Wang et al. 2015).

3. Materials and methods

This study’s data consists of gravel road images collected from
two sources. The first data source was created by extracting
images from recorded videos while driving on gravel roads
at 50 km/hr around Dalarna County, Sweden. Two GoPro
HERO7 cameras were used. One of the cameras was fixed to
the windshield inside. The other was outside on the vehicle’s
bonnet with a double clip strong suction cup to keep the cam-
era steady without obscuring the camera lens. More details of
the data collection can be found in (Saeed et al. 2021). Images
from the camera outside were extracted as they had a better

view of the road condition. The second source was the images
of gravel roads from Google Street View (Anguelov et al.
2010). These images were from gravel roads around Sweden.
Although traversing gravel roads on Google Maps and extract-
ing images from Google Street View is quite time-consuming,
Google Street View could be used for many image analysis pro-
blems. Multiple data sources were used to increase the size of
the data set, generalisation, and diversity for the model to
learn. A data set of 638 images was collected, combining the
images from two cameras and Google Street View. Some of
the images of gravel roads are shown in Figure 2.

3.1. Pre-processing data

For this study, 638 images were labelled by the first author in
two classes: 1 & 2 ratings, and 3 & 4 ratings, as shown in Figure
3. These classes or categories represent images according to
road condition grading by Trafikverket (Hossein Alzubaidi
2014). Due to the limited size of the image data set, images
are not categorised into four classes. Categories 1&2 and
3&4 are quite similar; therefore, images of roads with con-
ditions identical to ratings 1 and 2 were combined as one
class, named ratings 1 & 2. And roads with conditions compar-
able to ratings 3 and 4 were also incorporated as another class,
called ratings 3&4. This labelling was done by referring to
ground truth images present in the Trafikverket standard
images of ratings 1, 2, 3, and 4 in its manual (Hossein Alzu-
baidi 2014). This classification can help road maintenance
agencies identify roads of good quality or bad quality and cre-
ate maintenance plans accordingly. As the images in the data
set came from various sources, pixel intensity and dimension
are not the same across all the images. Normalisation was car-
ried out using ImageNet’s mean and standard deviation to
make model training stable and reduce bias. Normalising the
data is an important step that makes model training stable
and fast. All images were also resized to 224 × 224-pixel size.
The most essential pre-processing was to centre crop the
image so that the road stays in each image; otherwise, some
images might get resized where one can only see a tree,
grass, or side of the road. Data augmentation techniques
were applied to the data set of 638, such as random horizontal
flip, random rotation, and resize. After each augmentation
technique is applied, a new set of images is created to be sub-
mitted to CNN, thus increasing the data set by three folds after
augmentation. Data were split into train and test sets of 60%
and 40%, respectively. Table I shows the details of the data
set and distribution of the images into classes.

3.2. Retraining a deep neural network (Transfer
learning)

In practice, as it is not common to have a dataset of sufficient
size, it is unusual to train an entire convolution network from
scratch with random initialisation of weights. In the case of
small datasets, it has been shown that transfer learning can be
useful (Transfer learning for computer vison tutorial n.d.),
(Weiss et al. 2016). Transfer learning is an in-depth learning
approach that exploits the idea of transfer of knowledge from
a pre-trained network trained on large data. Pre-trained models
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usually help in better initialisation and convergence when the
data set is small. Pre-trained networks are trained on the Ima-
geNet data set containing 1.2 million images of 1000 categories
to another image classification task with a relatively smaller data
set, such as knowledge gained for recognising cars can detect
trucks in another problem (George Karimpanal and Bouffanais
2019, Russakovsky et al. 2015). Using transfer learning avoids
training a network from scratch, whichmay take extensive com-
puting power and training for days or weeks on Graphics Pro-
cessor Unit (GPU). Generalised features learned by the earlier
layers of the pre-trained networks, such as blobs, edges, colours,
etc., can help a comparatively different computer vision pro-
blem. Figure 4 shows a typical CNN topology.

3.3. Discriminative learning

In this study, discriminative learning, also called cyclic learn-
ing, is used to determine the optimal learning rate for training

layers of pre-trained CNN models. The learning rate is a
hyperparameter that controls the speed at which the model
learns. The weights are scaled by learning rate to minimise
the loss. A lower learning rate might be a good way to avoid
missing optimal solutions. At the same time, it could also
mean that it will take more time to converge. Discriminative
fine-tuning was introduced by Jeremy Howard and Sebastian
Ruder (Howard and Ruder 2018). Their proposed method is
that when different layers in a CNN capture different infor-
mation, layers should be fine-tuned to different extents
(Howard and Ruder 2018). Instead of using the conventional
practice of increasing or decreasing learning rates, the model
layers are grouped. The earlier layers can recognise general
details such as lines, curves etc. These initial layers are helpful
in most of the tasks. These layers are trained at a lower learning
rate so that the model has more time to train on small details.
Hence, the later layers are more task-specific and not useful,
such as for gravel road condition classification. These later
layers are therefore trained at a higher rate. This way, the
weights of lower rates will be changed less than the later layers
(Mushtaq et al. 2021, F. Zhang et al. 2021). The first phase
layers, before the newly added classification layer, are frozen
since they are already well trained; this will keep the weight
unchanged during the training. In the second phase, all the
layers are unfrozen and trained.

The optimal rate range can be found with the benefit of a
learning rate finder from the Fastai library [35]. Fastai library
is a deep learning library based on top of PyTorch. Pytorch is
an open-source machine learning framework based on python
(Paszke et al. 2019). Figure 5 shows the output of a discrimina-
tive learning rate finder. It shows a relation between the learn-
ing rate and loss over each iteration. It can be seen that the loss
function increases or decreases with respect to the learning
rate. It can be seen in the below graph where the loss is getting
constantly lower; in this case, it follows a steep path from
1e−04 to 1e−03. This is the optimal learning rate in this case.

Figure 2. Example images from various sources included in the data set.

Figure 3. Labelled images used for training CNN.

Table I. Details of the data set and class distributions.

Classes
Number of

training images
Number of

testing images
Total images
in each class

Total Images in
the dataset

1&2 163 109 272
3&4 220 146 366 638

4 N. SAEED ET AL.



The earlier layers will be trained at a lower learning rate of
le−04 and the higher layers of le−03. After this range, it is
seen that the loss function stops decreasing and then increases.
The idea is to choose a range where the loss function con-
tinues to decline.

3.4. Pre-trained CNN

The methodology followed in this study is shown in Figure 6.
Six pre-trained networks, including their variants, were used in
this study. These are briefly discussed as follows:

3.4.1. Residual network (Resnet)
In this study, two variants of ResNet are used, namely
ResNet18 and ResNet50. ResNet50 is a residual network hav-
ing 50 layers, whereas ResNet18 has 18 layers. It is similar to
VGG-16, except that Resnet50 has a supplementary identity
mapping capability. ResNet reduces the vanishing gradient
problem by an alternate shortcut path. This skipping effec-
tively simplifies the network, using fewer layers in the initial
training stage, where identity mapping allows the model to
converge faster by optimising the backpropagation path. Iden-
tity mapping helps in avoiding overfitting (Dhananjay Theck-
edath 2020).

3.4.2. Alexnet
Alexnet used a non-saturating Rectified Linear Units (ReLU)
activation function instead of Tanh activation and sigmoid.
Using ReLU showed improvement in Training performance.
It also introduced the concept of dropout. Dropout is used
to reduce overfitting in fully connected layers. It is a technique
for turning off neurons with a predetermined probability.
With each iteration, the model uses different parameters that
enable each neuron to have robust features that can be used
with other random neurons. However, this method increases
the training time needed for CNN to converge, which was
made feasible using a multi-graphics processing unit (GPU)
(Krizhevsky et al. 2012).

3.4.3. Densenet
DenseNet introduced the concept of dense connections
between layers through Dense blocks, where all layers connect
with matching feature-map sizes directly to each other. This
connectivity pattern yields state-of-the-art accuracies on
CIFAR10/100 (with or without data augmentation) and the
street view house numbers (SVHN) Data sets. DenseNets
have several compelling advantages: they alleviate the vanish-
ing gradient problem, strengthen feature propagation, encou-
rage feature reuse, and significantly reduce the number of
parameters. Using less than half the number of parameters
on the ILSVRC 2012 (ImageNet) dataset, DenseNet achieves
similar accuracy to ResNet (Iandola et al. 2014).

3.4.4. Visual geometry group (VVG 16)
Oxford University proposed the VGG model, one of the most
influential models that reinforced the notion that making the
architecture or CNN deeper improves performance. Its main
contribution is using a deeper convolution network with
small 3 × 3 convolutional filters. The performance improved
based on increasing the depth from 16 to 19 layers. Their
findings were proved in model submission in Image chal-
lenge 2015, where the VGG model secured first and second
place in localisation and classification tracks, respectively.,
although numerous follow-up works improved VGG archi-
tecture (Hameed et al. 2020, Simonyan and Zisserman
2016). For this study, VGG16, is used, which contains 16
weight layers.

Figure 4. A typical CNN Architecture.

Figure 5. Learning rate finder.
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3.5. Evaluation metrics

In this study, several metrics were used to evaluate the per-
formance of classifier metrics, such as accuracy, F1-score,
recall, and precision. These metrics are widely used to measure
classifier performance. Accuracy is defined as the percentage of
testing data correctly classified. In classification with imbal-
anced data, looking at other metrics, such as precision, recall,
and F1-score, can provide essential insights. Intuitively, the
class with more examples will have more chances of being
classified better, and hence the model’s overall performance
might be good.

Nevertheless, looking at how well the negative class is
classified is required. F1-score is the mean of precision and
recall. TP (True Positive) is correctly classified as instances
of the true class, and TN (True Negative) is correctly classified
as instances of the negative class.

Similarly, False Positive (FP) and False Negative (FN) mean
incorrectly classified true and negative class instances, respect-
ively (Wardhani et al. 2019, Hameed et al. 2020). In classifi-
cation problems with imbalanced data, the class with more
examples, or the majority class, is considered a negative
class. The class with fewer examples is regarded as a positive
class, so classes 1&2 are the positive class in this case. These
performance metrics can be calculated as follows:

. Accuracy evaluates the correctness of the model and its
ratio of correctly classified images to the total number of
testing images

Accuracy = TP+ TN
TP + TN + FP+ FN

. Precision quantifies the exactness of a model and represents
the ratio of images from classes 1&2 correctly classified out
of the union of the predicted same class.

Precision = TP
TP + FP

. Recall is also called sensitivity; it is the completeness of a
model. It computes the ratio of images correctly classified

as classes 1&2 out of the total number of images of true
class.

Recall = TP
TP+ FN

. F1-score represents the harmonic average of precision and
recall and is usually used to optimise a model towards either
precision or recall. This metric is the most-used member of
the parametric family of the F-measures, named after the
parameter value β = 1. F1 score is defined as the harmonic
mean of precision and recall (Chicco and Jurman 2020).

F1 = 2.TP
2.TP + FP+ FN

. 2.
Precision . Recall
Precision+ Recall

. The error rate is the proportion of instances misclassified.
Accuracy and error rate complement each other.

Error = FP+ FN
TP+ TN + FN + FP

4. Results

All the models (AlexNet, ResNet18, ResNet50, DesnseNet121,
DenseNet201, and VGG16) were trained using the standard
two-phase training discussed in section 3.3. The results show
gravel road classification with deep learning can be achieved
with decent accuracy with a small and imbalanced dataset.
The metrics for each model with other details, such as training
and validation loss, error rate, number of epochs, and the
learning rate for each phase, are presented in Table II. All
the models have performed well on our data set, with an accu-
racy of over 92%. The findings shown in Table II indicate that
the pre-trained Vgg16 model with transfer learning outper-
forms other models. The recall of Vgg16 is the highest,
which means there are more positive class cases classified or
detected by Vgg16 than in the rest of the models. The positive
class here is class 1&2 having fewer examples. Although in it
might seem that it would be more interesting to only get
class 3&4 of gravel to be classified correctly as these roads

Figure 6. Workflow of the proposed approach for detecting loose gravel.

Table II. Performance results of pre-trained networks.

Network
Training
loss

Validation
loss Accuracy

Error
rate Precision Recall

F1
Score

Epochs
phase 1

Epochs
phase 2

Learning rate
range phase1

Learning rate
range phase 2

ResNet18 0.151 0.185 0.922 0.078 0.992 0.867 0.890 5 3 1e-3,1e-2 1e-4,1e-3
ResNet 50 0.220 0.144 0.965 0.035 1.000 0.937 0.949 5 3 1e-3,1e-2 1e-4,1e-3
Alexnet 0.300 0.163 0.941 0.059 0.971 0.923 0.932 5 3 1e-3,1e-2 1e-4,1e-3
Densenet121 0.777 0.204 0.922 0.078 0.936 0.923 0.926 5 3 1e-3,1e-2 1e-5,1e-4
Densenet201 0.138 0.245 0.957 0.043 0.965 0.958 0.959 5 3 1e-3,1e-2 1e-4,1e-3
Vgg16 0.253 0.130 0.961 0.039 0.965 0.965 0.965 5 3 1e-3,1e-2 1e-4,1e-3
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are in critical need of maintenance. Correct classification of the
minority class 1&2 (roads with good and fair gravel road con-
ditions) also means that they will not be misclassified as gravel
roads of categories 3&4 (Bad and worst) gravel road con-
ditions. Hence the performance of CNN is reassuring. Vgg16
also has the highest accuracy but is similar to ResNet50.
Vgg16 outperforms by having the highest F1-score, which is
the harmonic mean of precision and recall, which is a better
indicator of the model’s overall performance regarding imbal-
anced data. Similarly, the performance of Densnet201 is also
commendable, with accuracy and F1-score close enough to
Vgg16, with a difference of only 1%. Training and validation
loss are also monitored to avoid overfitting.

5. Discussion

The experimental results show that state-of-the-art, pre-
trained CNN architectures using transfer learning can classify
images according to the loose gravel condition of the road with
appreciable accuracy. A data set of 638 images showing loose
gravel conditions on gravel roads has been used. These images
were obtained while driving through gravel roads of Dalarna
County, Sweden. The data set was increased by three folds
by using augmentation techniques. Results show that Vgg16
performed better with consistent accuracy of 96% and an F1-
score of 0.96. Vgg16 performs highest in classifying loose
gravel conditions in both positive classes (1&2) and negative
classes (3&4). The findings of this paper provide a solid basis
to advance the use of transfer learning through pre-trained
CNN models used for gravel road condition classification
through images.

One question might arise about how the proposed system
would react when classifying input-given images with vari-
ations in colour intensities. An algorithm was developed to
convert the images to greyscale images and train the CNN net-
work to test the sensitivity of the proposed model. For this
experiment, only Vgg16 was retrained as it was selected as it
outperformed previously. Vgg16 classified greyscale images
with an accuracy of 0.94, precision of 0.934, recall of 0.975,
and F1-score of 0.954. Converting images to greyscale would
bring all images to a standard colour model. This method
would make the system independent of the colour schemes
of the input images. The results were quite similar to the pre-
vious experiments.

The advantages of using pre-trained CNN models with
transfer learning for classification are manifold: firstly, the
classification mechanism is fully automated.

Secondly, it removes the conventional steps of segmenta-
tion, region of interest (ROI) outlining, feature extraction,
and selection. Thirdly, no inter-and intra-observer biases are
there during the classification, and the predictions made by
the pre-trained CNN models are reproducible with a high
accuracy.

6. Conclusion

Data were obtained by driving and recording videos through
Dalarna County, Sweden. Also, some images were added
from Google Maps, traversing the gravel roads of Sweden.

All the data represented Swedish gravel roads. Therefore,
this method could be applied to gravel roads in Sweden and
countries with similar terrain and climate. These automated
solutions using the proposed method can relieve much of
the burden on human experts by providing cost-effective,
efficient, and reliable assessments. They can replace traditional
visual inspection and automated methods requiring sophisti-
cated and expensive equipment. The research outcomes pro-
vide practical guidelines for developing transfer-learning-
based solutions for gravel road condition assessment methods.

In the future, experiments will be executed on the pre-
trained networks with more training data to classify images
into four classes, as suggested by Trafikverket. An additional
class with invalid images that don’t need classification could
be added, such as images with cars, etc. In this study, the
first author carried out the labelling of images. For a better
interpretation of important features learned by CNN for mak-
ing classification decisions, algorithms such as Gradient-
weighted Class Activation Mapping (Grad-cam) and guided
propagation be used in future work. This helps in the inter-
pretability of the model. It would be interesting to have the
classification done by experts from Trafikverket. Furthermore,
it would also be interesting to study human inter-rater varia-
bility in the condition-wise manual classification of gravel
road images.
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