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Abstract 
The use of electric vehicles (EVs) has been on the rise. 
Most of the existing EV smart charging controls can be 
categorized into three approaches according to their 
optimization principles: individual, bottom-up and top-
down. Until now, systematic comparison and analysis of 
the different approaches are still lacking. It is still 
unknown whether a control approach performs better than 
others and, if yes, why is it so. This study aims to fill in 
such knowledge gaps by conducting a systematic 
comparison of these three different control approaches 
and analyzing their performances in depth. A 
representative control algorithm will be selected from 
each control approach, then the selected algorithms will 
be applied for optimizing EV charging loads in a building 
community in Sweden. Their power regulation 
performances will be comparatively investigated. This 
study will help pave the way for the developments of more 
sophisticated control algorithms for EV smart charging. 
Introduction 
To reduce the roadside carbon emission and greenhouse 
gas emissions, many governments and organizations have 
set targets and policies for promoting the utilization of 
electric vehicles (EVs) to replace the fossil fuel-based 
vehicles. In response to these targets and policies, a boost 
of the EV deployment has been witnessed in the past 
decades. The market statistics still showed strong 
momentum in the EV deployment despite the Covid 
pandemic. The number of EVs on the roads worldwide 
reached 10 million by the end of 2020 (IEA 2021). In 
Sweden, there was a 310% increase in the full battery EV 
number in 2020 (Kane 2021). With the large number of 
EV deployments, the massive EV charging loads are 
expected to impose great stress on the existing grid 
infrastructures.   
To mitigate these problems and avoid the expensive 
upgrading of the existing power infrastructure, a resource-
efficient and cost-effective way is to use the smart EV 
charging (i.e., charge EV in the periods with large 
renewable power production) to enhance the local power 
balance and electrical energy matching (Chaouachi et al. 
2016). In other words, by properly scheduling the EV 
charging loads, the EV battery can be used as flexible 
energy storage to help regulate the electricity demands to 
match the renewable power production in the electric grid 
and thus improve the power supply quality (e.g., 
frequency regulation). Existing studies have proposed a 

number of smart EV charging controls for such 
application (Mohamed et al. 2020). A comprehensive 
review of the various EV smart charging schemes, 
including the objectives, configurations and control 
algorithms, is provided in (Fachrizal et al. 2020). 
According to the optimization logic, most of these 
controls can be roughly categorized into three approaches: 
individual independent approach, bottom-up coordinated 
approach, and top-down coordinated approach (Huang et 
al. 2020). Both the bottom-up and top-down coordinated 
approaches are coordinated controls, which typically 
considers the optimization of multiple EVs’ charging 
loads and takes the aggregated-level performance as the 
optimization target. The top-down coordinated approach 
typically conducts coordination from the aggregated-level 
and optimize multiple EVs’ charging load 
simultaneously, while the bottom-up coordinated 
approach typically optimizes single EV’s charging load 
sequentially to achieve the aggregated-level optimum. 
The individual independent approach typically considers 
the optimization of only one EV’s charging load and takes 
the single-level performance optimization as the target.  
Regarding individual independent approach, Cai et al. 
(Cai et al. 2019) developed an aging-aware model 
predictive control method. Dallinger and Wietschel 
(Dallinger and Wietschel 2012) proposed a stochastic 
model to determine the vehicle mobility behavior, an 
optimization model to minimize vehicle charging costs, 
and an agent-based electricity market equilibrium model 
to estimate variable electricity prices. Such control can 
balance the fluctuation of renewable energy sources in the 
grid. Regarding the bottom-up coordinated approach, in 
(Fachrizal and Munkhammar 2020) a centralized EV fleet 
charging control method is proposed for a residential 
building cluster. It optimizes the charging loads of EVs 
sequentially one by one based on the arrival time and 
departure time considering the interaction of individual 
EVs and photovoltaics (PV) power production. Similarly, 
in (Geth et al. 2010) a coordinated charging control for a 
number of EVs is proposed. In this control, a vehicle 
owner first indicates the point in time when the batteries 
should be fully charged. Then, the aggregator collects this 
information and calculates when each EV can start 
charging. The charging is optimized to be scheduled to the 
most economical period when the total demand (including 
the residential, industrial and EV consumption) is low. 
Regarding the top-down coordinated approach, Islam et 
al. (Shariful Islam et al. 2019) developed a correlated 
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probabilistic model for EV charging loads. In this 
probabilistic model, correlated samples are first 
generated, which contain various random variables 
associated with EVs, battery energy storage and PV. The 
generated samples are subsequently incorporated in the 
coordinated EV charging method to maximize quality of 
service while minimizing probability of voltage and 
current non-compliance.  
Although existing studies have developed different 
control approaches for implementing smart EV charging, 
there is a lack of a systematic classification and 
comparison of these different approaches. Therefore, this 
study provides an overview of different control 
approaches, systematically compares their advantages 
and disadvantages and analyzes their performances in 
depth. The purpose is to have a deep understanding of the 
various control approaches, which will pave the way for 
the resource-efficient integration of the large EV load and 
PV power penetration in the future. In this study, a 
representative control algorithm will be selected for each 
control approach. The different control approaches are 
then compared based on a case building community in 
Sweden, and their performances are compared and 
analyzed systematically.  
Methods 
This section first introduces the basic idea of different 
control approaches. Then, one control method will be 
proposed for each control approach, and the detailed 
implementation of each control method will be described. 
Basic idea of different control approaches 
Fig. 1 presents the schematics of three typical EV fleet 
control approaches for balancing power in the building 
sector: individual independent approach, bottom-up 
coordinated approach, and top-down coordinated 
approach. Both the bottom-up and top-down approaches 
are coordinated controls, which take the aggregated-level 
performance optimization as the target. While the 
individual independent approach takes the single-level 
performance optimization as the target. In the individual 
independent approach, the optimization of individual 
EV’s charging rates is conducted independently 
considering neither the other EVs’ charging load nor the 
aggregated one (see Fig. 1a). As a result, different EVs 
may charge at the same period, leading to the “avalanche 
effect (Kühnbach et al. 2021)” (i.e., creating new peak 
power loads for the power grid). In the bottom-up 
coordinated approach, the charging rates of individual 
EVs are optimized one by one in a sequence based on the 
arriving time to the charging station, and the optimization 
of each single EV’s operation is performed based on the 
aggregated results of the earlier optimized EVs (see Fig. 
1b). The optimization is based on the arrival time. Since 
the bottom-up coordinated approach takes the aggregated-
level performances as the optimization target, the 
performances at the aggregated-level are superior to the 
individual independent approach. However, due to a lack 

of global coordination, the optimization from bottom-up 
coordinated approaches may not produce the global 
optimum solution. Similar to the bottom-up coordinated 
approach, the top-down coordinated approach takes the 
aggregated-level performance directly as the optimization 
objective. The charging rates of individual EVs are 
coordinated simultaneously to achieve the optimized 
performance at the aggregated-level (see Fig. 1c). Since 
all the EVs are optimized at the same time, the 
computational load could be much higher compared to the 
other two approaches. In some existing controls (Usman 
et al. 2016), to reduce the number of variables to be 
optimized, the charging rates of EVs are fixed. The 
optimizer only needs to search for the charging time slots 
and thus reduces associated computational complexity. 
With fixed charging rates, the optimization performances 
might not be the optimal. Table 1 summarizes the three 
different approaches and compares their pros and cons.  

 
Figure 1 Schematics of three different control 

approaches for EV fleets in the building sector.  
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Table 1 Comparison of different EV fleet charging 

approaches. 

Individual independent approach (Cai, Zhang et al. 2019) 
(Dallinger and Wietschel 2012) 
Principle: The optimization of individual EV charging rates is 
conducted separately without considering the other EVs’ charging 
load. Then, the individual EV charging loads are aggregated to 
obtain the aggregated-level performance.  
Pros: Easy to implement 
Cons: 1. The aggregated level performance is not optimized. 
2. New demand peaks may occur when individual EVs take the 
same action (e.g., shift demand to the same period) 
Bottom-up coordinated approach (Fachrizal and Munkhammar 
2020) (Usman, Knapen et al. 2016) 
Principle: The charging rates of individual EVs are optimized one 
by one in a sequence, and the optimization of each single EV’s 
operation is performed based on the aggregated results of the earlier 
optimized EVs 
Pros: Better performance at aggregated level than individual 
independent approach 
Cons: 1. Due to a lack of global coordination, the optimization 
from bottom-up coordinated approaches may not produce the 
global optimal solution. 2. High computational load. 
Top-down coordinated approach (Shariful Islam, Mithulananthan 
et al. 2019) (Nayak et al. 2019) (van der Kam and van Sark 2015) 
(Huang et al. 2020) (Weckx and Driesen 2015) 
Principle: The aggregated level performance is used as the 
optimization objective. The charging rates of individual EVs are 
coordinated to achieve the best performances at the aggregated-
level. 
Pros: Optimized performance at aggregated-level.  
Cons: 1. It requires the controller to know/forecast the expected 
future arrival time in the building for all EVs, as the scheduling also 
considers the EVs that have not arrived yet. 2. The computational 
complexity increases with the number of EVs. 

Representative control algorithm for each approach 
This section presents the selected EV charging control for 
each approach, including the control logic and detailed 
mathematical modelling. Note this study only considers 
the unidirectional power flow, i.e., the G2V (grid to 
vehicle) mode. The EVs can only be charged. The 
bidirectional power flow, i.e., G2V2G (i.e., grid to vehicle 
to grid) is not considered.  
Algorithm for individual control 

Fig. 2 presents the selected control method for the 
individual independent approach. This control is 
implemented for each individual EV considering the 
single building’s (i.e., the building whether the EV gets 
power from) demand and renewable power production. 
Considering the computation speed and ability to find 
optimal solutions, Genetic Algorithm (GA), an 
evolutionary optimization algorithm, is used in the 
control. Note that other algorithms are also applicable for 
different controls, as long as the computational loads are 
acceptable. In each iteration, a set of alternatives (in this 
study the alternatives refer to EV charging loads) will be 
produced by the GA optimizer. These alternatives will 
then be imported into the building and PV system model 
for calculating the power exchanges with the grid in each 
timestep. Then, the power exchanges in each timestep will 
be imported into the fitness function to evaluate the fitness 
values of the alternatives. The alternatives with good 

fitness values will be selected and used for producing the 
alternatives in the next generation. The iteration will 
continue until the optimal solutions are found. Since there 
is existing toolbox available for implementing the GA 
optimization in Matlab and Python, this study will not go 
into details about the mathematics of GA. For more 
details about the GA, please refer to (Yang 2021).  

  
Figure 2 Selected optimization logic for the individual 

control approach. 

The detailed mathematical modelling is introduced below. 
In each timestep, the charging rates (𝑢𝑢𝑢𝑢 

 𝑘𝑘𝑘𝑘 (kW), 0 < 𝑢𝑢𝑢𝑢 
 𝑘𝑘𝑘𝑘 <

𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘𝑘𝑘 , in which 𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑘𝑘𝑘𝑘  (kW) is the maximum charging 

rate) of the kth EV should meet the following two 
constraints,  
0 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0,𝑘𝑘𝑘𝑘 × 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘 + (𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑘𝑘𝑘𝑘

 𝑘𝑘𝑘𝑘 + 𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑘𝑘𝑘𝑘+1
 𝑘𝑘𝑘𝑘 + ⋯+ 𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑘𝑘𝑘𝑘+𝑙𝑙𝑙𝑙

𝑘𝑘𝑘𝑘 ) × 𝜏𝜏𝜏𝜏 ≤
𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘     where i=1,2,…, nk,  (1) 

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0,𝑘𝑘𝑘𝑘 (%) is the initial state of charge when the 
kth EV arrives at the charging port; 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘  (kW·h) is the 
capacity of the kth EV battery; 𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘 is the arrival time of the 
kth EV at the charging port; nk is the parking duration; and 
𝜏𝜏𝜏𝜏 is the simulation interval (15 minutes in this study). 
In order to meet the travelling needs of the next trip, the 
EV battery should be charged to a user-specified level 
( 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑘𝑘𝑘𝑘 ) before they depart the charging port. This 
constraint is expressed by the equation below,  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0,𝑘𝑘𝑘𝑘 × 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘 + (𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑘𝑘𝑘𝑘
 𝑘𝑘𝑘𝑘 + 𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑘𝑘𝑘𝑘+1

𝑘𝑘𝑘𝑘 + ⋯+ 𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑘𝑘𝑘𝑘+𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘
𝑘𝑘𝑘𝑘 ) × 𝜏𝜏𝜏𝜏 𝜏

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑘𝑘𝑘𝑘 × 𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘 .           (2) 
In Eq (2), when 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑘𝑘𝑘𝑘 equals 1, it represents that the EV 
users require the EV battery to be fully charged before 
they depart the charging port. In this strategy, minimizing 
the peak power exchanges with the grid is used as the 
optimization target. Following this control goal, a fitness 
function is determined, as expressed by (Salom et al. 
2011)   

𝐽𝐽𝐽𝐽𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔 = min (𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘𝑏𝑏𝑏𝑏 ),     (3) 
where 𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘𝑏𝑏𝑏𝑏  (kW) is the peak power exchange of the 
building with the grid. 𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘𝑏𝑏𝑏𝑏  (kW) in Eq. (3) is calculated 
by the two equations below. 

𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙
𝑏𝑏𝑏𝑏 = 𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔,𝑙𝑙𝑙𝑙

𝑏𝑏𝑏𝑏 + 𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 𝑘𝑘𝑘𝑘 − 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠,𝑙𝑙𝑙𝑙
𝑏𝑏𝑏𝑏 .                (4)  

𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘𝑏𝑏𝑏𝑏 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚��𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒,1
𝑏𝑏𝑏𝑏 �, �𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒,2

𝑏𝑏𝑏𝑏 �, … �𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒,96
𝑏𝑏𝑏𝑏 � �  (5) 

In Eq. (4), 𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔,𝑙𝑙𝑙𝑙
𝑏𝑏𝑏𝑏  (kW) and 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠,𝑙𝑙𝑙𝑙

𝑏𝑏𝑏𝑏  (kW) are the power demand 
and renewable power supply of the individual building in 
each simulation interval (i.e., 15 minutes), respectively.  
𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 𝑘𝑘𝑘𝑘 (kW) is the charging load of the kth EV parked in the 
building in the ith simulation step. 𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙

𝑏𝑏𝑏𝑏  (kW) is the power 
exchange with the grid of the building in each simulation 
interval considering the EV charging load. Note there are 

Single building 
and PV system 

models
GA Optimizer

Fitness function estimator

1. Minimize peak power exchanges
2. Maximize PV self-utilization 

• Optimized power exchanges with the grid of the building: [ ]
• Optimized charging rates for each EV: [ ]

[ ]Fitness trial 
values

Charging rates of the kth EV [ ]

Search ranges and constraints Weather data in future 24h
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96 simulation steps in each day (96=24 hours × 4 
simulation-steps/hour), as the simulation timestep is 15 
minutes (see Eq. (5)). The outputs of GA search are the 
optimal charging loads ([𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑘𝑘𝑘𝑘

𝑘𝑘𝑘𝑘𝑘,𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑘𝑘𝑘𝑘+1
𝑘𝑘𝑘𝑘𝑘 , … 𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙𝑘𝑘𝑘𝑘+𝑛𝑛𝑛𝑛𝑘𝑘𝑘𝑘

𝑘𝑘𝑘𝑘𝑘 ] (kW)) for 
the kth EV to meet the control targets.  
Algorithm for bottom-up control  

Fig. 3 presents the selected control method for the bottom-
up coordinated approach. This control is implemented for 
each individual EV in a sequence considering the 
aggregated-level power demand and renewable power 
production. Again, the GA algorithm will be used in the 
control optimization. The detailed mathematical 
modelling is introduced below.  

   
Figure 3 Selected optimization logic for the bottom-up 

control approach. 

In the bottom-up coordinated approach, the optimization 
is based on the aggregated-level power demand and PV 
power production. The power demand (𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔,𝑙𝑙𝑙𝑙

𝑐𝑐𝑐𝑐  (kW)) and PV 
power production (𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠,𝑙𝑙𝑙𝑙

𝑐𝑐𝑐𝑐  (kW)) of the community in the ith 
simulation step are calculated by aggregating single 
building’s power demand and PV power production. 

𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔,𝑙𝑙𝑙𝑙
𝑐𝑐𝑐𝑐 = ∑ 𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔,𝑙𝑙𝑙𝑙

𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗𝑗1 .                            (6) 

𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠,𝑙𝑙𝑙𝑙
𝑐𝑐𝑐𝑐 = ∑ 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠,𝑙𝑙𝑙𝑙

𝑏𝑏𝑏𝑏,𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗𝑗1 .                          (7) 

Eqs. (6) and (7) shows the calculation of the aggregated-
level power demand and PV power production of all the 
n buildings. The peak power exchange of the whole 
building community with the grid 𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘𝑐𝑐𝑐𝑐  (kW) is 
calculated by 
𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚��𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒,1

𝑐𝑐𝑐𝑐 �, �𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒,2
𝑐𝑐𝑐𝑐 �, … �𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒,96

𝑐𝑐𝑐𝑐 � �                 (8) 
where 𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙

𝑐𝑐𝑐𝑐  (kW) is the power exchange with the grid of 
the whole building community considering the EV 
charging load in the ith simulation step. In each iteration, 
the calculation of 𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒 ,𝑙𝑙𝑙𝑙

𝑐𝑐𝑐𝑐  is updated by adding the 
previously optimized EV charging load.  
1st step - EV 1:   𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙

𝑐𝑐𝑐𝑐 = 𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔,𝑙𝑙𝑙𝑙
𝑐𝑐𝑐𝑐 − 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠,𝑙𝑙𝑙𝑙

𝑏𝑏𝑏𝑏 .                (9) 
2nd step - EV 2: 𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙

𝑐𝑐𝑐𝑐 = 𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔,𝑙𝑙𝑙𝑙
𝑐𝑐𝑐𝑐 + 𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 1𝑘 − 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠,𝑙𝑙𝑙𝑙

𝑏𝑏𝑏𝑏 .                (10) 

3rd step - EV 3: 𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙
𝑐𝑐𝑐𝑐 = 𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔,𝑙𝑙𝑙𝑙

𝑐𝑐𝑐𝑐 + (𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 1𝑘 + 𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 2𝑘) − 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠,𝑙𝑙𝑙𝑙
𝑏𝑏𝑏𝑏 .    (11) 

⋮  
Eqs. (9) to (11) shows the calculating of the power 
exchange with the grid (𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙

𝑐𝑐𝑐𝑐  (kW)) in each iteration. The 
fitness function for the optimization strategy (i.e., 
minimize the peak power exchanges with the grid) is 
depicted by 

𝐽𝐽𝐽𝐽𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔 = min (𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘𝑐𝑐𝑐𝑐 ).    (12) 
The process will continue until all the EVs being 
optimized in the building community.  
 
Algorithm for top-down control  

Fig. 4 presents the selected control method for the top-
down coordinated approach. This control is implemented 
for all the EV simultaneously considering the building-
aggregated-level power demand and renewable power 
production. Again, the GA algorithm will be used in the 
control optimization.  

  
Figure 4 Selected optimization logic for the top-down 

control approach. 

The fitness function for the control strategy is the same as 
the bottom-up coordinated approach, as depicted by Eqs. 
(12). While the calculation of the power exchange with 
the grid of the building community (𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙

𝑐𝑐𝑐𝑐  (kW)) in each 
timestep should consider all the EV charging load, see the 
equation below, 

𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙
𝑐𝑐𝑐𝑐 = 𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔,𝑙𝑙𝑙𝑙

𝑐𝑐𝑐𝑐 + (𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 1 + 𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 2 + 𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 3 + ⋯ ) − 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠,𝑙𝑙𝑙𝑙
𝑏𝑏𝑏𝑏 .     (13) 

The top-down control requires the controller to 
know/forecast the expected future arrival time in the 
building for all EVs, as the scheduling also considers the 
EVs that has not arrived yet. It then produces the optimal 
charging loads of all the EVs in one simulation. The 
outputs are the optimized charging loads of all the EVs 
[𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙1

 1𝑘,  𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙1+1
1𝑘 , … ,𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙1+𝑛𝑛𝑛𝑛1

1𝑘 ], [𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙2
 2𝑘,  𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙2+1

2𝑘 , … ,𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙2+𝑛𝑛𝑛𝑛2
2𝑘 ], …  

This study will compare the above-mentioned three 
control algorithms, as well as a benchmark scenario 
without any smart EV charging control, i.e., the EVs are 
charged at rated charging rate once they are plugged into 
the charging station, as mostly used nowadays.  
Results 
A building community located in Ludvika, Dalarna region 
of Sweden is used for analysis in this study. There are 
three separate buildings in the studied building 
community. In the case studies, a summer week was 
selected to test the different control approaches. 
Considering the different driving patterns in workdays 
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and weekends (the EVs might not be parked in the 
community during weekend daytime), this study only 
considers the five workdays for simplicity. The weather 
data of Ludvika was used for modelling the local PV 
power productions. Table 2 summarizes the EV 
information used for the simulation. Considering the 
uncertainty in the EV usage (e.g., the EVs could be used 
more in some days), the initial SOCs in each day are set 
differently. The time interval of simulation was set to 15 
mins with the purpose of improved accuracy.  

Table 2 Configuration of EVs for the simulation in the 

workdays of the selected week 

 Capacity Limit   

EV 1 53 kW∙h 12 kW 
Arrive  ~ N (6:00, 102) 
Depart ~ N (14:00, 102) 

Initial SOC ~ N (40%, 5%2) 

EV 2 39 kW∙h 12 kW 
Arrive  ~ N (8:00, 102) 
Depart ~ N (16:00, 102) 

Initial SOC ~ N (40%, 5%2) 

EV 3 32 kW∙h 12 kW 
Arrive  ~ N (10:00, 102) 
Depart ~ N (17:00, 102) 

Initial SOC ~ N (40%, 5%2) 

Power demand and supply information  

Fig. 5 displays the power demand, PV power generation, 
and electricity mismatch in each timestep (i.e., 15 minutes 
interval) during the workdays in a typical summer week 
for the three buildings. The electricity demand only 
includes the domestic electricity loads (i.e., lighting, 
washing machine, TV, etc.). The trends of PV power 
production of the three buildings are similar, since the 
solar irradiation is nearly the same for the three buildings. 
As Building C has the largest roof area, more PV panels 
can be installed on its roof. Thus, it has the largest average 
PV production. Power mismatch of each building is 
calculated as the deviation between its power demand and 
renewable generation in each timestep. A positive value 
of power mismatch indicates insufficient renewable 
generation (and thus grid power is needed), while a 
negative value of power mismatch indicates excessive 
renewable generation (and thus selling electricity to the 
grid is needed).  

 
Figure 5 The power demand, PV power generation and 

power mismatch in each timestep during the weekdays in 

the selected summer week for the three buildings 

Note this study only conducts simulation for five days. 
This is because of two reasons: (1) One week simulation 
can already reveal the characteristics of each control 
approach. (2) The computational load will increase 
exponentially if the simulation is conducted for a full 
year. To increase the optimization performance, this study 
used a simulation timestep of 15 minutes. In other words, 
there are 4 variables to be optimized in each hour. In the 
optimization, the average number of variables to be 
optimized for each EV is 32 (i.e., 8 hours parking period 
on average in each day). Considering the large number of 
variables to be optimized, in the GA optimization, the 
number of generations is set as 8000, and the population 
size is set as 10000. The genetic algorithm is coded in 
Matlab. 

Energy performance comparison  
Fig. 6 compares the energy flow of the whole building 
community under different EV charging approaches. The 
bars represent the power flow of PV system, building 
demand and EVs, respectively. And the blue curve with 
marks represents the power mismatch, which is deviation 
between the total power demand and total power 
production. The power mismatch will be adjusted by the 
power grid and thus can be interpreted as the energy 
exchanges with the grid. When EV charging loads are not 
included, in Day-1 to Day-3, since the total PV power 
production is much larger than the community electricity 
demand, the peak power exchanges are caused by the 
large renewable power exports to the grid. While in Day-
4 and Day-5, the peak power exchanges are caused by the 
large power demand due to the insufficient PV power 
production.  
Fig. 6(a) is the case when there is no EV smart charging. 
Since the EVs are charged immediately at the rated 
charging rates after they are connected to the charging 
ports, large EV charging loads are observed near the 
arrival time of each EV (e.g., see Day-1 to Day-5). While 
when there are multiple EVs being charged 
simultaneously, large peak demands will be produced 
(e.g., see the large peak loads in Day-3 and Day-4). As 
can be seen in Day-1, Day-2 and Day-3, there are both 
large PV power exports to the grid and large demand 
penetration on the grid. Fig. 6(b) shows the performance 
under the individual control approach. Compared to the 
no EV smart charging case, the large charging loads are 
more evenly distributed in periods with large PV power 
production, and thus the large power demands are 
avoided. As can be seen in Day-1, Day-2 and Day-3, the 
peak power exchanges are caused by the PV power 
exports. The large power demands in Day-4 and Day-5 
are also significantly shaved. Since there is a lack of 
coordination among different EVs’ charging loads, there 
are large fluctuations in the power exchanges (e.g., see the 
large PV power exports in Day-1 and Day-2). Fig. 6(c) 
presents the performance under the bottom-up control 
approach. The bottom-up control implements 
coordination of the EV charging loads, i.e., shift the 
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charging load of an EV to avoid overlapping with the 
charging load of previously optimized EVs, and thus the 
peak power exchanges are reduced compared to the 
individual control approach. The fluctuation of peak 
power exchanges is also smaller (e.g., see the large PV 
power exports in Day-1 and Day-2). Fig. 6(d) shows the 
performance under the top-down control approach. There 
are obvious limits of the peak power exchanges with the 
grid. As can be seen in Day-1 and Day-2, the peak energy 
exports are well limited to specific values in a long period, 
and in Day 4, the peak power demand is well limited to a 
specific value during the daytime. This is because the top-
down control implements a global coordination of all the 
EVs’ charging load and takes the community-level 
aggregated performances directly as the control target. It 
is capable of identifying the global optimum.  

    
Figure 6 Power flow of the building community and EVs 

under different EV control approaches (a) No control, 

(b) Individual control, (c) Bottom-up control, and (d) 

Top-down control.  

To have a more straightforward look into the 
performances of different control approaches, the daily 
peak power exchanges with the grid are calculated and 
compared, as shown in Fig. 7. The performance 
improvements (i.e., the reduction in the peak power 
exchanges) compared with the reference case (i.e., no 
smart charging) are also calculated in each day and 
presented in Fig. 7. As can be seen, all the three controls 
can significantly reduce the daily peak power exchanges 
with the grid. The individual control reduces the daily 
peak power exchanges by 15% to 65% compared to the 
reference case. The bottom-up control performs better 
than the individual control in reducing the peak power 
exchanges. It can reduce the daily peak power exchanges 
by 38% to 71% compared to the reference case. The top-
down control performs the best among all the control 
approaches, and it can reduce the daily peak power 
exchanges by 48% to 73% compared to the reference case 
in the studied week. Table 3 summarizes the daily peak 

power exchanges under different control approaches and 
the relative performance improvements.  

 

Figure 7 Comparison of the daily peak power exchanges 

with the grid and the relative performance improvement 

under different control approaches. (IC: individual 

control; BU: bottom-up control; TD: top-down control) 

 
Table 3 Summary of the daily peak power exchanges 

under different control approaches and the relative 

performance improvements. 

Controls Day- 1 2 3 4 5 
No control 

(Benchmark) 
Peak power 

exchanges (kW) 5.3 5.1 7.9 9.0 8.0 

Individual 
control 

Peak power 
exchanges (kW) 4.3 4.3 2.8 4.4 5.1 

Relative 

improvement 

20

% 

15

% 

65

% 

51

% 

36

% 

Bottom-up 
control 

Peak power 
exchanges (kW) 3.3 3.4 2.3 3.3 4.4 

Relative 

improvement 

38

% 

33

% 

71

% 

63

% 

44

% 

Top-down 
control 

Peak power 
exchanges (kW) 2.3 2.6 2.3 2.4 3.1 

Relative 

improvement 

56

% 

48

% 

71

% 

73

% 

61

% 

Computational performances comparative analysis 
The computational loads of the three controls are also 
compared. Table 4 compares the total computational 
performances for the five-day simulation considering 
three EVs with a simulation timestep of 15 minutes. The 
simulation was conducted on a computer with 128.0 GB 
installed RAM and AMD Ryzen Threadripper 3990X 64-
Core Processor 2.90 GHz. In the GA search engine, the 
number of generations is set as 8000, and the population 
size is set as 10000. In the individual control and bottom-
up control, as the EV charging loads are optimized one by 
one, the average number of variables to be optimized 
simultaneously is 32 (i.e., an average parking period of 8 
hours a day and 4 variables in each hour). The call times 
of GA engine of these two controls are both 15 (i.e., 3 EVs 
in each day and 5 days in total). While for the top-down 
control, the average number of variables to be optimized 
in each optimization increased to 96 (i.e., an average 
parking period of 8 hours a day, 4 variables in each hour 
and 3 EVs), but the call times of GA engine reduced to 5 
(i.e., 5 days). The total computing time for the individual 
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Po
w

er
 fl

ow
 (k

W
)

Day-1 Day-2 Day-3 Day-5Day-4

Day-1 Day-2 Day-3 Day-5Day-4

Day-1 Day-2 Day-3 Day-5Day-4

Day-1 Day-2 Day-3 Day-5Day-4

24:00 24:00 24:00 24:00 24:00

24:00 24:00 24:00 24:00 24:00

24:00 24:00 24:00 24:00 24:00

24:00 24:00 24:00 24:00 24:00

Time

0%

10%

20%

30%

40%

50%

60%

70%

80%

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

ts

Pe
ak

 p
ow

er
 e

xc
ha

ng
es

 (k
W

)

Day

No control Individual control Bottom-up control
Top-down control IC v.s. NC BU v.s. NC
TD v.s. NC

6

E3S Web of Conferences 362, 06006 (2022) https://doi.org/10.1051/e3sconf/202236206006
BuildSim Nordic 2022



control, bottom-up control and top-down control are 8 
hours, 6.5 hours and 10.8 hours, respectively. The ability 
to converge is assessed by checking while the optimized 
solutions become stable after several repeated 
optimization. If the required number of repetitions to 
reach a stable solution is large, the convergence ability is 
poor. The ability to converge is poorer in top-down 
control compared to the other two controls, since the total 
number of variables to be optimized is three times the 
number in the other two controls. This means the 
optimization might need to be implemented multiple 
times to obtain a converged global optimum. Note with 
the increase of the EV number, the computing complexity 
of top-down control will increase dramatically in each call 
of the GA engine, which may deteriorate the optimization 
results. While for the individual control and bottom-up 
control, the computing load in each call of GA engine will 
not change much.    
The total computing time for the non-coordinated control, 
bottom-up coordinated control and top-down coordinated 
control are 5~8 hours, 5~8 hours and 9~12 hours, 
respectively. Note that due to the randomness in selecting 
the initial population and mutation of child populations, 
the time required for implementing GA can be different 
when running it multiple times for the same problem. The 
values in the table only provide a rough reference about 
the computational loads. The call times of the GA engine 
and the variables to be optimized in each simulation are 
more influential on the final required time. 
Table 4 Comparison of the computational performances 

of the three approaches considering three EVs in a 

typical summer week (five workdays). 

Controls 

Average 
number of 

variables to be 
simultaneously 

optimized 

Call 
times of 

GA 
engine 

Computational 
load (hour) 

Ability 
to 

converge 

Individual 
control 

32 15 8 Good 

Bottom-up 
control 

32 15 6.5 Good 

Top-down 
control 

96 5 10.8 Poor 

Conclusions 
This study has classified existing EV smart charging 
control methods into three categories according to (i) 
whether there is coordination, and (ii) how coordination 
is conducted. For each control approach, a control 
algorithm has been selected using the GA algorithm, and 
their performances have been systematically compared in 
different aspects. The comparison reveals how different 
ways of coordination affect the demand response 
performances of EV smart charging. The control 
objective minimizing the peak power exchanges with the 
grid has been considered in the comparison. A case 
building community located in Dalarna County of 
Sweden with three EVs has been used for the case studies 

and comparison. The major findings are summarized as 
follows.  
• Both the two coordinated controls, i.e., bottom-up and 

top-down controls, can achieve much better control 
performances at the aggregated-level compared to the 
individual control. The individual control reduces the 
daily peak power exchanges by 15%~65% compared 
to the reference case, while the two coordinated 
controls reduce it by 38%~71% and 48%~73%, 
respectively.  

• The top-down control approach can achieve better 
control performance than the bottom-up control. This 
is because the top-down control is able to coordinate 
the operation of all EVs considering the constraints 
during the full optimization period. While, with the 
combined effects of a non-optimal start and the 
accumulation of the ‘biased’ subsequent optimization, 
bottom-up control approach cannot lead to global 
optimum like the top-down control approach.   

• Despite the good optimization performances, the 
computation complexity in one call of GA search 
engine is much larger in the top-down control, as the 
large the number of parameters to be optimized 
simultaneously. As a result, with the increase of EV 
number, the computing complexity in single 
optimization increases significantly. This will make it 
difficult to converge and identify the global optimum.   

The results from this study suggest that decision makers 
need to make a balance between the control performances 
and the computational complexity. If the number of EVs 
is substantially large, bottom-up coordinated approach 
can achieve near-optimum performances with good 
convergence ability. While if the number of EVs is 
relatively small, the top-down coordinated approach is a 
better alternative, which can converge and identify the 
global optimal solutions. The idea of top-down 
coordinated approach, which directly takes the 
aggregated-level performances as the optimization target, 
can find the global optimal solutions.  
The conclusions related to the different ways of 
coordination can be applied to different countries, as the 
methods are generic.  
This study considers simple scenarios of EV mobility 
patterns and did not consider the EV battery degradation 
due to the smart charging. Future work will use more 
sophisticated EV usage models to investigate the EV 
smart charging benefits. 
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