
IATSS Research 47 (2023) 305–317

Contents lists available at ScienceDirect

IATSS Research
Research Article
Assessing the color status and daylight chromaticity of road signs
through machine learning approaches
Roxan Saleh a,b,⁎, Hasan Fleyeh a, Moudud Alam a, Arend Hintze a

a School of Information and Engineering, Dalarna University, Borlänge 781 70, Sweden
b Swedish Transport Administration, Röda Vägen 1, Borlänge 781 89, Sweden
⁎ Corresponding author at: School of Information and E
Borlänge 781 70, Sweden.

E-mail addresses: roxan.saleh@trafikverket.se, rss@du.
(H. Fleyeh), maa@du.se (M. Alam), ahz@du.se (A. Hintze)
Peer review under responsibility of International Associatio

https://doi.org/10.1016/j.iatssr.2023.06.003
0386-1112/© 2023 International Association of Traffic and
creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 24 February 2023
Received in revised form 25 May 2023
Accepted 22 June 2023
Available online xxxx
The color of road signs is a critical aspect of road safety, as it helps drivers quickly and accurately identify and re-
spond to these signs. Properly colored road signs improve visibility during the day and make it easier for drivers
tomake informed decisionswhile driving. In order to ensure the safety and efficiency of road traffic, it is essential
to maintain the appropriate color level of road signs.
The objective of this study was to analyze the color status and daylight chromaticity of in-use road signs using
supervised machine learning models, and to explore the correlation between road sign's age and daylight chro-
maticity. Three algorithms were employed: Random Forest (RF), Support Vector Machine (SVM), and Artificial
Neural Network (ANN). The data used in this study was collected from road signs that were in-use on roads in
Sweden.
The study employed classificationmodels to assess the color status (accepted or rejected) of the road signs based
on minimum acceptable color levels according to standards, and regression models to predict the daylight chro-
maticity values. The correlation between road sign's age and daylight chromaticity was explored through regres-
sion analysis. Daylight chromaticity describes the color quality of road signs in daylight, that is expressed in terms
of X and Y chromaticity coordinates.
The study revealed a linear relationship between the road sign's age and daylight chromaticity for blue, green,
red, and white sheeting, but not for yellow. The lifespan of red signs was estimated to be around 12 years,
much shorter than the estimated lifespans of yellow, green, blue, and white sheeting, which are 35, 42, 45, and
75 years, respectively.
The supervisedmachine learningmodels successfully assessed the color status of the road signs andpredicted the
daylight chromaticity values using the three algorithms. The results of this study showed that the ANN classifica-
tion and ANN regression models achieved high accuracy of 81% and R2 of 97%, respectively. The RF and SVM
models also performed well, with accuracy values of 74% and 79% and R2 ranging from 59% to 92%. The findings
demonstrate the potential of machine learning to effectively predict the status and daylight chromaticity of road
signs and their impact on road safety in the Swedish context.
© 2023 International Association of Traffic and Safety Sciences. Production and hosting by Elsevier Ltd. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Road signs play a crucial role in ensuring road safety and effective
communication between drivers and the road infrastructure. Road
signs serve as the primary medium for conveying information to road
users, and it is imperative that they remain visible and easily readable
both during the day and at night. The color of road signs is a crucial
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factor in their visibility and legibility, especially in different lighting con-
ditions. Different colors help drivers to identify and distinguish between
signs [1], and as such, the chromaticity of the sign's color must meet the
acceptable levels set by the relevant standards [2].

However, with time, the colors of road signs deteriorate, making
them increasingly difficult to be seen, and as a result, the road authori-
tiesmust replace these signs tomaintain visibility and recognition [3]. In
order to assess the condition of road signs, road authorities typically
conduct in-suite inventory assessments using hand-held instruments.
However, this process is time-consuming, labor-intensive, requires ex-
pensive tools, and can pose a risk to maintenance personnel [4].

The objective of this study is to explore the usefulness of purely pre-
dictive methods to evaluate the condition of road signs, as opposed to
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in-suite inventory assessment. Specifically, the study aims to determine
the rate of deterioration of road sign color (daylight chromaticity) with
a view to determining the time threshold when a sign needs to be re-
placed. Knowing the expected life of a road sign based on its color is cru-
cial for informed decision-making about sign specifications and
purchasing [5].

The study focuses on the use of machine learning to predict the con-
dition of in-use road signs according to their daylight chromaticity and
color status. The study employs classification models to predict if a
road sign meets acceptable standards and nonlinear regression models
to predict the sign's daylight chromaticity over time. By examining the
application of machine learning in predicting the condition of road
signs, the study highlights the cost-effective and reliable nature of this
approach. The research compares various machine learning techniques
and models using data from road signs in Sweden, demonstrating the
potential benefits of this method in providing road authorities with an
efficient and cost-effective way to evaluate the condition of road signs.
Ultimately, these findings have the potential to improve road safety
and communication between drivers and road infrastructure.

The research covers a broad range of topics, such as examining how
different factors (such as age, class, color, direction, GPS positions, and
retroreflectivity) affect the daylight chromaticity of road signs, evaluat-
ing the deterioration of their chromaticity over time, and gathering and
offering significant data on road sign daylight chromaticity.

The findings from this research will provide road authorities with a
better understanding of sign performance, help themmake more accu-
rate predictions about when to replace signs, and improve road safety
and the effectiveness of road sign communication.

The remainder of this article is organized into several sections.
Aliterature review is presented in Section 2, followed by researchmoti-
vation and objectives in Section 3. In Section 4, the materials and
methods, including data, algorithms, andmodels, are described. The re-
sults of the study and the performance of the proposedmodels for each
algorithm are presented in Section 5. Section 6 provides a discussion of
the findings, while Sections 7 and 8 offer conclusions and implications
for practice. Finally, the limitations of the study and directions for future
research are discussed in Section 9.

2. Literature review

The degradation of road signs has been widely studied in various
environments, including isolated outdoor areas, actual roads (exposed
Table 1
Summary of the reviewed literature discussing road sign deterioration.

Author(s) Year Method Aim

Saleh et al. [1] 2022 Supervised machine learning (ANN,
SVM, RF)

Predict retror

Black et al. [6] 1992 Statistical analysis Study retrore
Rasdorf et al. [7] 2006 Night time inspection and field data Evaluate nigh
Ré et al. [8] 2011 Linear regression Predict retror
Swargam [9] 2004 Neural network models and regression

models
Predict retror

Jamal et al. [10] 2022 Linear regression and neural network
models

Predict retror

Alkhulaifi et al. [11] 2021 Deep neural network, Regression:
linear, polynomial

Predict retror

Babić et al. [12] 2017 Regression: linear, logarithmic,
exponential

Predict retror

Immaneni et al. [13] 2009 Regression Examine rela
Saleh et al. [14] 2022 Statistical analyses and regression Predict retror
Brimley et al. [15] 2013 Controlled long-term study Evaluate the
Hawkins [17] 2021 Literature review Provide recom
Molino et al. [18] 2013 Spectroradiometric measurements Compare inst

by human ob
Brimley et al. [19] 2010 Weathering simulation Evaluate the

weathered sa
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to weather, traffic, and vandalism), and indoor laboratory tests [5]. De-
spite the extensive research in this area, there remains a lack of under-
standing about color fading of road signs and its impact on
retroreflectivity degradation. The purpose of this literature review is
to provide a comprehensive overview of the current state of research
in this area and to identify areas where further study is needed.
Table 1 illustrates studies conducted by researchers investigating the
degradation of road signs.

Previous research on the degradation of road signs has primarily
focused on the expected lifespan of signs based on the deterioration of
retroreflectivity [6–10]. Regressionmodels have been developed to pre-
dict the coefficient of retroreflection (RA) and assess the rate of deteri-
oration of retroreflectivity [1,11–14].

However, there has been limited research on the effect of color fad-
ing on retroreflectivity [15]. The deterioration of signs over time has
been found to impact their performance in terms of both color chroma-
ticity and retroreflectivity. Generally, signs that fail in chromaticity do so
before those that fail in retroreflectivity [16].

A study performed in 2014 aimed to provide data on the life of road
signs based on the degradation of retroreflectivity and color over time.
The results showed that color, especially for red signs, may fall below
adopted thresholds prior to retroreflectivity failure [17].

A study conducted in 2010 evaluated the performance of road signs
in terms of retroreflectivity and color. Results from an experiment with
9 different sheeting products showed that aging affected both color
chromaticity and retroreflectivity, with most products failing in color
before retroreflectivity. Orange, red, and yellow sheeting were found
to fail first under chromaticity, while white and green signs typically
failed under retroreflectivity standards [18].

Prior research has examined the effect of color on the visibility and
legibility of road signs [3], but there have been limited studies that
have investigated the color and daylight chromaticity of these signs.
Additionally, there have been no studies to predict the degradation of
daylight chromaticity.

In conclusion, there is a clear need for further research to fill the
gap in the field of road sign degradation. A comprehensive study is
needed to understand the impact of color fading on retroreflectivity
and to develop methods for predicting the degradation of daylight
chromaticity. The findings from this literature review highlight the
importance of studying the durability of road signs concerning
color and the need for further investigation to ensure the continued
safety of road users.
eflectivity

flectivity deterioration with age
ttime performance of traffic signs considering retroreflectivity
eflectivity
eflectivity

eflectivity

eflectivity of signs

eflectivity

tionships between retroreflectivity and age
eflectivity
deterioration of traffic signs with respect to retroreflectivity
mendations on the use of retroreflective sign sheeting based on prior research

rument measurements with daytime perceptual judgments of color properties made
servers in the field
performance of sign sheeting against retroreflectivity and color criteria using
mples.
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3. Research motivation and objectives

While previous research has highlighted the importance of
retroreflectivity and color (daylight chromaticity) conditions for road
sign visibility and legibility, there remains a lack of studies investigating
the degradation of color and predicting daylight chromaticity of road
signs.

This study addresses this gap in the field of road sign degradation by
providing a comprehensive understanding of the impact of color fading
on the age of road signs and developingmethods for predicting the deg-
radation of daylight chromaticity.

The aimof this study is to evaluate the efficacy of predictivemethods
in determining the rate of deterioration of road sign color (daylight
chromaticity) and establish a time threshold for replacement. The ob-
jective is to provide decision-makers with crucial information about
the expected life of road signs based on their color status. To achieve
this, the study focuses on utilizing machine learning to predict the con-
dition of in-use road signs based on their daylight chromaticity and
color status.

4. Methods-material and experiments

4.1. Data description and pre-processing

This study focused on the collection and analysis of data from road
signs in Sweden. In 2021, the lead author collected a new dataset by
assessing 91 road signs randomly chosen in and around Stockholm
(see Fig. 1). This dataset was combined with a dataset from 2018 that
was previously collected by the Road and Transport Research Institute
(VTI), which covered road signs from other regions of Sweden [19].
The two datasets were combined to broaden the geographical coverage,
encompass a wider range of road sign categories and increased the
number of observations. The combined dataset consisted of 695 records
and the age of signs ranged frombrand new to 44 years old,whereas the
previous VTI dataset only included signs up to 35 years old [19]. The
same measurement method and comparable measuring instruments
were used in the two datasets.

The data analysis involved evaluating seven variables: age, class,
color, direction, GPS positions, coefficient of retroreflection (RA), and
daylight chromaticity.

The age of road signs was determined using the manufacturing year
indicated on a sticker located at the back of each sign. However, some
signs were missing this information due to illegible text or absent
stickers. In order to ensure the accuracy of the dataset, all signs that
did not have complete information were removed through a data
cleaning process. As a result, approximately 8% of the total observations
were eliminated and the cleaned data contained 636 records.

The retroreflective sheetingwas categorized into three classes: Class
1 (most reflective), Class 2, and Class 3 (least reflective). The color of the
signs was also noted, including blue, green, red, white, and yellow. The
direction of the signs was recorded in degrees, providing the azimuth
angle to which the sign was facing. North, East, South, and West were
recorded as 0, 90, 180, and 270 degrees, respectively. The GPS position
was included in the form of latitude and longitude coordinates. The co-
efficient of retroreflection (RA) was also included in the data, expressed
as a ratio of the amount of light reflected back to the amount of light
incident on the retroreflective material.

The daylight chromaticity of the road signs was measured and
included in the data as well. The daylight chromaticity was measured
using a Konica Minolta spectrometer CM-25cG system and was
expressed in terms of X and Y chromaticity coordinates [20] (used to
describe the color in a two-dimensional CIE color diagram).

These coordinates describe the color in terms of its position in a two-
dimensional CIE color diagram and are used to describe the relative
position of a color within the color box, Fig. 2. The color status of the
road signs was evaluated according to acceptable minimum visibility
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requirements set by the Swedish Transport Administration and
European standards [2]. If the color of a sign passed the acceptable re-
quirements, specifically the chromaticity boundaries, it was considered
“Rejected.” And the road sign should be replaced. Road signs with color
located inside the designated area will be considered as”Accepted”.

The color status of the road signs was evaluated according to the
minimum visibility requirements set by the Swedish Transport Admin-
istration and European standards [2]. The European standards regulate
the daylight chromaticity of road signs based on the coordinates in CIE
color diagram and use color boxes to ensure that road signs have the
correct color and are suitable for their intended purpose. The measured
chromaticity was compared with the minimum retroreflectivity re-
quirements in the European standards [2] and the signs were labeled
“Accepted” or “Rejected”, Fig. 3. If the color of a sign exceeded these
chromaticity boundaries, it was considered “Rejected”.

The datasetwas imbalanced and had a severe class distribution skew
with a ratio of 35:566, in the minority class compared to the majority
class for color status. The Random Oversampling technique was used
to create a balanced version of the dataset by generating new samples
for theminority class. The datawas cleaned, and any irrelevant variables
were removed. The dataset (age, class, color, direction, GPS positions,
Coefficient of retroreflection (RA), X, and Y) was scaled using normali-
zation and standardization methods. Normalization scales variables to
a range of 0 to 1 and is useful when the variables have vastly different
ranges and no outliers [11], while standardization transforms the distri-
bution of variables to have a mean of 0 and standard deviation of 1,
making it suitable for data that follows a normal distribution [21,22].

4.2. Variable importance

According to state-of-the-art, there was no evidence that the previ-
ous studies examined the effect of factors such as road signs' age,
class, color, direction, GPS positions, and Coefficient of retroreflection
(RA) on daylight chromaticity. This study utilizes Random Forest (RF)
to determine the relative importance of these variables and calculate
the resulting importance scores to predict status, X, and Y. To improve
the accuracy of the model, it is crucial to identify the key variables. By
determiningwhich variables aremost crucial, themodel can be stream-
lined, and its accuracy can be improved. Additionally, variable impor-
tance can provide insights into the relationships between features and
target variables.

4.3. LOWESS regression analysis

In this study, Locally Weighted Scatterplot Smoothing (LOWESS)
was utilized as an exploratorymethod to investigate the connection be-
tween age and daylight chromaticity degradation (X and Y). The aim
was to determine the best fit. LOWESS is a non-parametric fitting
method that doesn't rely on the assumption that the data follows a
particular distribution. Unlike parametric fitting, it doesn't produce a
universal equation to predict new data points.

The smoothingwindow size in LOWESS can be altered by specifying
the fraction (0,1) of the data that thewindow should encompass. A frac-
tion of 1.0 results in a straight line, whereas smaller fractions lead to a
LOWESS curve that follows the data points more closely. In this study,
a fraction of 0.3 was utilized to achieve a smoother LOWESS curve.

4.4. Algorithms

In this study, the color of the road sign, based on color status, was
predicted using classification algorithms. Regression algorithms were
used to predict the daylight chromaticity on CIE color coordinates of
the road sign.

Three machine learning algorithms were employed in this study for
both regression and classification models: Random Forest, Support
Vector Machine, and Artificial Neural Network.



Fig. 1. The locations of the measured road signs. Red points represent the signs in the VTI data and those measured by the author are depicted in blue.
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• Random Forest (RF)

Random Forest (RF) can be utilized for both categorical response var-
iables (classification) and continuous response variables (regression). The
predictor variables can also be either categorical or continuous [23].

The Random Forest Classifier (RFC) is used for classification, while
the Random Forest Regressor (RFR) is utilized for regression. RFR per-
formance can be improved by tuning its parameters [23–25]. In this
308
study, the RFR was trained with various tuned parameter values (such
as n_estimators, max_features, max_depth, and Random_state) to find
the highest-performing RFR model.

The mathematical equation of the RF architecture in regression is
given in Eq. (1) and in classification is given in Eq. (2).

f xð Þ ¼ 1
J
∑J

j¼1hj xð Þ ð1Þ
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Fig. 2. Location of the measured road signs on CIE diagram (points falling outside the re-
spective color box indicate rejected state).
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f xð Þ ¼ arg max y∑
J
j¼1I y ¼ hj xð Þð Þ: ð2Þ

Where hj(x) is the prediction of the response variable at x using the
jth tree.
Fig. 3. The color status for the measured road
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• Support Vector Machine (SVM)
Support Vector Classifier (SVC) was employed for classification and
Support Vector Regressor (SVR) was used for regression models. The
goal of SVC is to locate a hyperplane in an N-dimensional space that
clearly separates the data points. The objective of SVR is to find the op-
timal hyperplane with the maximum number of points to assist in
predicting a continuous value or target value.

The performance of SVM is affected by the choice of tuning parame-
ters, such as kernel parameters and penalty or margin parameters
[26,27].

This study used radial basis function (RBF) kernels in both classifica-
tion and regression models to find the hyperplane in a higher dimen-
sional space. Eq.(3) explains RBF mathematically.

f x1; x2ð Þ ¼ e
− x1−x2ð Þk k2

2σ2 ð3Þ

Where: ‘σ’ is the variance (hyperparameter), ||X1 – X2|| is the
Euclidean Distance between two points X₁ and X₂.

The Grid Search method was employed to determine the optimal
combination of parameters (Gamma and C) that would result in supe-
rior prediction accuracy for the SVR models.

• Artificial Neural Networks (ANN)

In this study, a Multilayer Perceptron (MLP) classifier was utilized
for classification, and a Multilayer Perceptron regressor was utilized
for regression. The MLP Classifier was used to predict the status of the
color of the road sign. On the other hand, the MLPRegressor was em-
ployed to predict daylight chromaticity.
signs (green accepted and black rejected).



Table 2
Summary of the models.

Input
variables

Age, Class, Color, Direction,
GPS

Age, Class, Color, Direction,
GPS

Models Classification Regression
Algorithms RFC

SVC
MLPClassifier

RFR
SVR
MLPRegressor

Splitting 3-fold Cross Validation (KCV) train-test split with a 20%
test set

Validation
Using

Accuracy score, Precision, Recall,
F1-Score

MAE, MSE, RMSE, R2

Output Color status
(accepted/rejected)

Daylight chromaticity
(X and Y)

R. Saleh, H. Fleyeh, M. Alam et al. IATSS Research 47 (2023) 305–317
The MLP Regressor models were configured using the following pa-
rameters: The number of layers and nodes were set to 150, 100, and 50.
The number of epochs used for training the model was 300. The activa-
tion function used was ‘relu’, while the weight optimization algorithm
across the nodes was set to ‘adam’. A random state parameter was
also included, which allows setting a seed for reproducing the same
results. The mathematical equation of the ANN architecture is given
in Eq. (4)

f xð Þ ¼ ∑xi�wið Þ þ b ð4Þ

4.5. Models

Table 2 summarizes the input and output variables, models, and al-
gorithms used in this study. Twomodels were used in this study: classi-
fication models for predicting color status and regression models for
predicting daylight chromaticity (X, Y).
Fig. 4. Variable Importance
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Cross-validation is widely used to estimate the prediction error [28].
In this study, 3-fold cross-validation was applied to evaluate the classi-
fication models. For evaluating regression models, a train-test split was
used, with 20% of the data assigned for testing.

Accuracy, precision, recall, and F1-Score were calculated to evaluate
the classification models, with accuracy being the main metric used for
comparison. Mean absolute error (MAE), mean squared error (MSE),
root mean squared error (RMSE), and coefficient of determination (R2)
were used to evaluate regression models, with RMSE and R2 being the
main metrics used to assess the fit of the regression model to the data.
If the regression model fits the data perfectly, RMSE, MAE, and MSE
have a value of zero, and R2 has a value of one [8,29].

5. Results

5.1. Variable importance

The impact of the input variables was analyzed using RandomForest
(RF) models for both classification and regression. The results, pre-
sented in Figs. 4, 5, and 6, show the variables sorted in order of impor-
tance, with the most important variable to the color status and
daylight chromaticity being the coefficient of retroreflection (RA).

The most important variables affecting the color status were the RA
and GPS position (Fig. 4), while RA and Age were found to be the most
important variables affecting X and Y values (Figs. 5 and 6).

However, the class of the sheeting was found to be the least impor-
tant in determining X and Y values (Figs. 5 and 6).

5.2. The relationship between age and daylight chromaticity
(X, Y) degradation

As depicted in Section 4.1, age was found to be a very important
variable in regard to daylight chromaticity (X, Y). As a result, further
investigation into the degradation of color appearance (daylight
Scores for color status.



Fig. 5. Variable Importance Scores to X using Random Forest Regression.
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chromaticity) was conducted to examine the relationship between age
and daylight chromaticity.

To better understand this relationship, scatterplots were generated
for each color along with LOWESS regression, as shown in Fig. 7. The
purpose of this was to model the connection between X and Y with
the age of the road sign. By studying the relationship between age and
daylight chromaticity, we can gain deeper insight into the degradation
of color appearance and how it can be prevented in the future.
Fig. 6. Variable Importance Scores to Y
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According to the results of LOWESS regression, the relationship be-
tween X and Y with age was found to be approximately linear for the
blue, red, and white colors. However, for the yellow color, the relation-
ship was linear up to the age of 8 years, non-linear between 8 and
22 years, and finally linear after 22 years.

The changes in X and Y values over timewere also observed for each
color. The values of X and Y for blue and white sheeting increased with
age, while X decreased, and Y increased for red sheeting. This explains
using Random Forest Regression.



Fig. 7. LOWESS fit plots of the relationship between X and Y with age.
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Fig. 8. The relationship between blue color and age.

Fig. 9. The relationship between green color and age.

Fig. 10. The relationship between red color and age.
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Fig. 11. The relationship between green color and age.
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why blue and red sheeting tends to bleach and move towards a white
color over time.

In contrast, the X value for yellow sheeting decreased during thefirst
8 years, then changed direction twice between the ages of 15 and
22 years. After that, bothX andY decreasedwith age. As a result, the yel-
low colormoves inside the yellow color box during degradation, leading
to a longer lifespan for this color.

5.3. Predicting the age of road signs according to colors

As proven in section 4.1, the passing of time has an impact on the
color of road signs. The color pigments used in the printing process
can be affected by different conditions that cause fading of the colors
by aging. Additionally, it was found that the relationship between age
and daylight chromaticity (X, Y) was linear, section 4.2.

The impact of age on daylight chromaticity (X, Y) was further inves-
tigated through the use of 3D plots, as seen in Figs. 8-12, to find the
expected service life of each color of road sign.

Amatrixwas created from the 3D points, where each row represents
a point, and each column represents a dimension. The matrix was cen-
tered by subtracting the mean value of each column from each data
point. Finally, Singular Value Decomposition (SVD) was applied to the
centered matrix to find the principal components of the data. The first
Fig. 12. The relationship between yellow color and age.

Fig. 13. Directions of color changes with age using PCA.
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Table 3
Accuracy of classification models.

Scale Accuracy Precision Recall F1-Score

RF Stand/Norm 0.79 0.80 0.86 0.83
SVM Stand/Norm 0.74 0.63 0.67 0.64
ANN Stand 0.76 0.82 0.86 0.83

Norm 0.81 0.83 0.89 0.86
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principal component that explains the most variance in the data repre-
sents the direction in which the points vary the most. This vector indi-
cates the direction of degradation of X and Y with respect to age, and
the intersection point of this vector with the color box gives the age
when the road sign should be replaced.

The relationship between age and daylight chromaticity (X, Y) for
each road sign color was visualized in 2D CIE diagram (Fig. 13) by
projecting the vectors representing the mean degradation of X and Y
with age. It was observed that the blue and red colors move towards
the white color box located in the center of the CIE diagram. The
green color is expected to lighten and turn yellow with aging. On the
Fig. 14. Box plot representing a summary of performance m
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other hand, the yellow color is anticipated to exit the color box after
35 years. These findings provide insight into the expected changes in
color appearance of the road signs over time.

The blue, green, red, and white road signs were expected to have
ages of approximately 45, 42, 12, and 75 years, respectively. However,
due to a limited number of green road signs in the data, the expected
age of green color could not be concluded.

The red colorwas found tomove out of the color box rapidly, with an
expected age of only 12 years. It is anticipated that white road signswill
have a lifespan of over 75 years.

The yellow road signs were predicted to have an age of 35 years
because of the nonlinear relationship between age and X, Y.

5.4. Predicting the color status of road signs

The performance of the models was evaluated on oversampled and
scaled data, and the results are summarized in Table 3. The classification
models achieved high accuracy rates ranging from 74% to 81%.

The three classification models (RF, SVM, and ANN) used the same
variables (age, color, class, GPS coordinates, and direction) in their
etrics (R2, RMSE, MSE and MAE) for regression models.
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predictions, as these variables were found to be important for the RF
model. Despite some variables potentially being less important for
SVM and ANN models, they were still included for comparative
purposes.

Among the three models, ANN was found to have the highest accu-
racy (81%) in predicting the color status, likely due to its ability to
learn and model complex non-linear relationships between inputs and
outputs [30]. The other two models, RF and SVM, also performed well,
with accuracy values ranging from 74% to 79%.

5.5. Predicting the daylight chromaticity (X and Y)

The results of the regression models for predicting daylight chroma-
ticity (X and Y) using RF, SVM, and ANN are summarized in Fig. 14. The
accuracy (R2) of these models ranges from 59 to 97% and RMSE ranges
from 10 to 41%.

The ANN model performs the best with the highest R2 values (97%,
and 95% for predicting X and Y, respectively) and the lowest RMSE
(10%, and 12% for predicting X and Y, respectively).

6. Discussion

Previous studies on the degradation of road signs have mostly fo-
cused on the expected lifespan of signs based on the deterioration of
retroreflectivity. However, this study proves that color fading is also
an important factor that affects the expected age of road signs and
their visibility and legibility. By focusing on the color status and daylight
chromaticity of road signs, this study provides valuable insights into im-
proving the regulation of road signs, reducing maintenance costs, and
ensuring road safety.

The study found that the coefficient of retroreflection (RA) was the
most important variable that affects color status (degradation of color)
and daylight chromaticity. This relationship can be explained by the
fact that both daylight chromaticity and RA are influenced by the
same factors. Over time, exposure to different factors such as UV light,
temperature fluctuations, and chemical exposure can cause the retrore-
flective layer to degrade, leading to a decrease in its ability to reflect
light. At the same time, exposure to these factors can also cause the
color pigments used in the printing process to fade or deteriorate.

The class of retroreflective sheeting used for road signs does not
have a big impact on the degradation of the color of the signs. The
class of sheeting refers to the level of retroreflectivity, or the ability of
the material to reflect light back to its source, such as a vehicle's
headlights.

All classes of retroreflective sheeting are typically printed in the
same way. The process of printing involves applying a layer of ink or
pigments onto the surface of the sheeting to create the desired text or
image. This printing process is done using specialized equipment that
is designed to work with the specific properties of the retroreflective
material. The main difference between the classes of retroreflective
sheeting lies in the quality and durability of the retroreflective layer,
not in the printing process or printing quality. Regardless of the class
of retroreflective sheeting used, appropriate printing equipment and
materials must be used to ensure that the printed color has a high-
quality and long-lasting result.

The red color was found to move out of the color box more rapidly
than other colors. It tends to fademore quickly than other colors for sev-
eral reasons, such as red pigments are often more sensitive to UV light
than other colors. Red pigments absorb more light energy than other
colors, which can cause them to degrade more quickly.

In the printing process, some red pigments are less chemically stable
than other colors. This makes them more susceptible to fading or dete-
rioration when exposed to environmental factors such as humidity,
temperature fluctuations, or chemical pollutants.

Among the classification models used in this study, ANN was found
to have the highest accuracy in comparison to SVM and RFmodels. ANN
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has a flexible training process and its ability to be fine-tuned to improve
performance.

Even ANN regression model performs the best for predicting X and
Y. The superior performance of the ANNmodel is likely due to its ability
to learn and model complex relationships between inputs and outputs,
leading to accurate predictions.

Low prediction accuracy (R2 of 59%) in RF regression models can be
attributed to factors such as overfitting, limited model complexity, sen-
sitivity to outliers, missing data, and limited feature selection. To im-
prove the performance of RF regression models, it is important to
carefully preprocess the data and tune the hyperparameters.

7. Conclusions

This study fills the gap in research by analyzing the impact of several
factors that affect the color fade of road signs with respect to their age
and daylight chromaticity. The study analyzed the impact of various fac-
tors on the color fade of road signs such as….

• The study concluded that color, sheeting? class, GPS coordinates, di-
rection, and coefficient of retroreflection are important to color status
and daylight chromaticity.

• It is also conclude that the relationship between the age of the sign
and its daylight chromaticity is linear for blue, green, red, and white
colors, but not for yellow at the age of up to 22 years.

• Predicted age for blue, green, red, white, and yellow sheeting was 45,
42, 12, 75, and 35 years, respectively.

• Red pigment used in road signs is more susceptible to fade and dete-
riorate due to its location near the edge of the designated CIE color
box.

• To extend the lifespan of red signs, it is suggested to use red pigments
located closer to the center of the CIE color box.

• The regulation of color (daylight chromaticity) of road signs is crucial
to improve visibility and legibility, ensuring road safety and reducing
maintenance and replacement costs.

• Machine learning models, including RF, SVM, and ANN, were used to
predict the color status and daylight chromaticity of road signs with
high accuracy.

• Themodels achieved an accuracy ranging from 74to 81% for classifica-
tion and R2 ranging from 59 to 97% for regression.

8. Implications for practice

The studys' results have significant implications on the transporta-
tion industry in terms of road signmaintenance, placement, and design.
The study found that different colored road signs have different
lifespans ranging from 12 to 75 years based on the signs' colors., As a re-
sult, transportation authorities should prioritize the production and
maintenance of red road signs due to their shorter lifespan and chroma-
ticity placement near the edges of the CIE red box.

To reduce the impact of color fade caused by environmental factors,
such as sunlight, rain, and snow, it is crucial to use high-quality red pig-
ments that are resistant to fading and deterioration and properly main-
tain the signs. Using red pigments that are closer to the center of the CIE
color box for red can help reduce the risk of color fading and ensure the
red color on the sign remains consistent and vibrant over a more ex-
tended period.

Regulating the colors of road signs is crucial for maintaining traffic
safety, and it's essential to pay attention to more than just retro-
reflectivity. In fact, some road signs may fade in color before losing
their retroreflectivity, which can significantly impact their effectiveness.
This is especially true for red road signs, which are crucial for ensuring
safety on the road.

Regulating the daylight chromaticity of road signs is also important
for color consistency and high visibility, which is essential for road
safety. This regulation can minimize the need for frequent repairs or
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replacements of signs due to color fade or degradation, ultimately re-
ducing replacement costs. However, some white road signs have been
discovered to have various problems, such as dirt, grime, mildew,
mold, cracking, and peeling, despite having a long lifespan of over
75 years. This discrepancy can be attributed to harsh environmental
conditions such as tree sap, which can penetrate the surface and cause
cracking and peeling. Additionally, being located outside of the color
box means that the signs are subjected to extreme weather conditions,
further shortening their lifespan.

In summary, road sign color regulation is an essential factor inmain-
taining traffic safety, and it should not be overlooked in favour of
retroreflectivity alone. Red road signs are crucial for ensuring safety on
the road and must be visible in daylight and at night. By paying atten-
tion to both retroreflectivity and color regulation, transportation au-
thorities can ensure that road signs remain effective and that drivers
can accurately and easily identify them, promoting road safety for all.

9. Limitations and future research

Limitations of the study include the relatively lowR2 values of the re-
gressionmodels used to predict the daylight chromaticity of road signs,
indicating the need for further research to improve the accuracy of
predicting the expected service lifespan of road signs.

Future research should consider additional factors such as sign size,
location,weather conditions, and air pollution,whichmay affect the de-
terioration rate of road sign color. Furthermore, expanding the dataset
to include road signs from different regions and countries can increase
the generalizability and applicability of the models.
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