Lars Broman and Arne Broman
A PARABOLOID REFLECTOR APPROXIMATED BY SIMPLE SURFACES
A PARABOLOID REFLECTOR
APPROXIMATED BY SIMPLE SURFACES

Lars Broman, Solar Energy Research Center, University
College of Falun/Borlänge, Box 10044,
S-781 10 Borlänge, SWEDEN

Arne Broman, Department of Mathematics, Chalmers University
of Technology, S-412 96 Göteborg, SWEDEN

Abstract

A paraboloid of revolution is cut by planes parallel to its axis, dividing the surface into strips. These strips are approximated by bending certain strips made of flat reflecting material. Formulas for the shape of these strips are derived.
Introduction

A paraboloid of revolution is difficult to manufacture from e. g. coated aluminum sheets. A reflector close to a paraboloid of revolution can be made of concentric rings¹, but there are other ways to make a paraboloid-like surface, easy to produce.

Let the paraboloid $4fz = x^2 + y^2$ (here f is its focal distance) be cut into strips by several planes $y = y_k$. Replace each strip by the surface obtained by letting a line segment glide, parallel to the yz-plane, with its end points on the boundary parabolas. This new strip can be flattened out on a plane.

This way to make a surface close to a paraboloid has some advantages. The shape of the focal region becomes a thin region with smaller area than the circular focal region obtained by using concentric strips. Also, material losses are kept small when cutting the strips out of (rectangular) sheets.

To the authors' knowledge, the formulas derived in this paper have not been deduced previously. A preliminary report was given at the 1st International Conference - Applied Optics and Solar Energy in Czechoslovakia².
Derivation of equations for the strips

Consider the surface $z = x^2 + y^2$ in Figure 1, given in an orthonormal coordinate system xyz (i.e. the three coordinate axes are pairwise perpendicular, and the unit of length is the same on the three axes). The surface is a paraboloid of revolution. Let two numbers a and b, such that $a < b$, be given. Intersect the paraboloid by the planes $y = a$ and $y = b$. The intersections are parabolas. Denote them by p_a and p_b respectively. Let a real number x be given. Intersect the paraboloid by the plane through the point $(x, 0, 0)$ that is perpendicular to the x-axis. The intersection is a third parabola. Denote it by p_x. Let A and B be the points where p_x intersects p_a and p_b respectively. Let V be the vertex of the parabola p_a (see Figure 2), and let C be a point on its positive half tangent at A (then C has a larger x-coordinate than A).
A problem

Find two functions g and h or, fuller

$$\xi = g(x), \quad \eta = h(x), \quad -\infty < x < \infty,$$

(1)

with these properties:

1. The functions g and h have continuous derivatives g' and h' with $g'(x) > 0$ on the entire x-axes.

2. Let g be a given real number, and set $y' = (0, g)$. The functions g and h map the point y onto the point y' and the parabola P_a onto a curve C_a in the $\xi\eta$-plane, such that C_a is symmetric with respect to the η-axis. Let A' denote the image of A under the mapping and, assuming $A' = (\xi', \eta')$, set $B' = (\xi', \eta' + |AB|)$; here $|AB|$ denotes the length of the line segment AB. Denote the locus of B' by C_b.

3. The arc length $y'A'$ along the curve C_a is equal to the arc length yA along the parabola P_a.

4. Let C' be a point on the positive halftangent of the curve C_a at the point A'. The angles BAC and $B'A'C'$ are congruent.

Comments on the problem.

(a) Consider the strip of the $\xi\eta$-plane bounded by the curves C_a and C_b. By the listed properties of the functions g and h (in particular the properties 3 and 4), this strip can be bent to form a strip whose edges coincide with the parabolas P_a.
and \(P_b \). Further, any plane parallel to the \(yz \)-plane intersects the bent strip along a line segment of length

\[
|AB| = \sqrt{(b - a)^2 + [(b^2 + x^2) - (a^2 + x^2)]^2} \\
= (b - a) \sqrt{1 + (a + b)^2}
\]

(2)

Also, the bent strip approximates fairly well the strip of the paraboloid between the parabolas \(P_a \) and \(P_b \).

(b) We first tried to solve the problem numerically. The result indicated that the function \(\eta = h(x) \) probably is a polynomial of degree two. This induced us to try to find a solution in closed form. The following solution was obtained.

Solution of the problem.

\[
B = (x, b, x^2 + b^2) \\
C = (x+1, a, x^2 + a^2 + 2x) \\
A = (x, a, x^2 + a^2)
\]

Figure 3.

Consider Figure 3. It shows, among others, the points \(A, B, \) and \(C \) of Figure 2 and their coordinates. It is seen that the vectors \(\overrightarrow{0, 1, a+b} \) and \(\overrightarrow{1, 0, 2x} \) have the directions of the directed line segments \(\overline{AB} \) and \(\overline{AC} \) respectively. Let \(\Theta \) denote the measure (with \(0 < \Theta < \pi \)) of the angle \(\overline{BAC} \). Use of the dot product gives

\[
\cos \Theta = \frac{(0, 1, a+b) \cdot (1, 0, 2x)}{\sqrt{1 + (a + b)^2} \sqrt{1 + 4x^2}} = \frac{cx(a+b)}{\sqrt{1 + 4x^2}}
\]

(3)

where

\[
c = \frac{2}{\sqrt{1 + (a + b)^2}}
\]

(4)

Assume that the functions \(g \) and \(h \) satisfy the problem.

Consider Figure 4. It shows, among others, the points \(V', A', B', \) and \(C' \) of Figure 2 and the coordinates of \(V' \) and \(A' \). The length of the arc \(V'A' \) is given by property 3, and
\(\Theta \) (as in (3)) is given by property 4. Let \(s(x) \) denote arc length, measured along the curve of Figure 4, normalized so that \(s(x) \) has the same sign as \(x \). Then (see the arc \(V'A' \) in Figure 4)

\[
\frac{ds}{dx} = \sqrt{1 + 4x^2}
\]

and (see (3) for \(\cos \Theta \))

\[
\frac{d\eta}{ds} = \cos \Theta = \frac{cx(a+b)}{\sqrt{1 + 4x^2}}
\]

It follows that

\[
\frac{d\eta}{dx} = \frac{d\eta}{ds}\frac{ds}{dx} = \frac{cx(a+b)}{\sqrt{1 + 4x^2}} \cdot \sqrt{1 + 4x^2} = cx(a+b)
\]

and \(h(x) = \eta \) gives

\[
\eta = h(x) = q + cx^2(a+b)/2
\]

Assume that \(\Theta \neq \pi/2 \). (Because \(\tan \pi/2 \) is not defined, we shall treat the case \(\Theta = \pi/2 \) separately.) Then

\[
\frac{d\xi}{d\eta} = \tan \Theta
\]

and Figure 5 gives

\[
\frac{d\xi}{dx} = \frac{d\xi}{d\eta}\frac{d\eta}{dx} = \tan \Theta \cdot cx(a+b) = \sqrt{1 + \left[4 - c^2(a+b)^2 \right] x^2} \]

\[
\sqrt{1 + \left[4 - c^2(a+b)^2 \right] x^2}
\]

\[
\frac{cx(a+b)}{\sqrt{1 + 4x^2}}
\]

\(\Theta \)

\[
\frac{cx(a+b)}{\sqrt{1 + 4x^2}}
\]
It is seen that the first and last members here are equal also when $\Theta = \pi/2$. The last equation can be simplified by noting that

$$\quad 4 - c^2(a+b)^2 = 4 - \frac{4(a+b)^2}{1 + (a+b)^2} = c^2$$

and, therefore,

$$\frac{d\xi}{dx} = \sqrt{1 + c^2x^2}$$

Hence, using $g(x) = \xi$ and $g(0) = 0$ (and a table of integrals) and denoting the natural logarithm by \ln:

$$\xi = g(x) = \frac{x}{2} \sqrt{1 + c^2x^2} + \frac{1}{2c} \ln \left(cx + \sqrt{1 + c^2x^2} \right) \quad (6)$$

The formulas (6) and (5) with the constant c given by (4) solve the problem. It is readily checked that the functions (6) and (5) have the properties 1 to 4 listed in the context of (1).
Formulas for practical use

In the preceding section, the focal length \(f \) of the paraboloid was assumed to be 1/4. Introducing an arbitrary focal length \(f' \), the equation for the paraboloid becomes

\[
4f'z = x^2 + y^2
\]

For a strip that lies between the planes \(y = a \) and \(y = b \), the boundary curves are given by

\[
\xi_a = \xi_b = \frac{x}{2} \sqrt{1 + c^2 x^2} + \frac{1}{2c} \ln(cx + \sqrt{1 + c^2 x^2})
\]

(7)

\[
\eta_a = \frac{(a + b)c x^2}{8f}
\]

(8)

\[
\eta_b = \eta_a + w
\]

(9)

where the constant \(c \) is given by

\[
c = \frac{2}{\sqrt{16f^2 + (a + b)^2}}
\]

(10)

and the width \(w \) of the strip is given by

\[
w = |AB| = |A'B'| = \sqrt{(b-a)^2 + \left[\frac{(b^2 + x^2)}{4f} - \frac{(a^2 + x^2)}{4f}\right]^2}
\]

or, shorter,

\[
w = (b - a) \sqrt{1 + \left[\frac{(a + b)}{4f}\right]^2}
\]

(11)

Given \(f' \), \(a \), and \(b \), a computer program that gives \(\xi_a', \xi_b', \eta_a' \), and \(\eta_b \) for a given sequence of \(x \)-values is conveniently based on formulas (7) to (11).
References

SERC-REPORTS (ISSN 0284-1568)

SERC-UCFB-001
PROGRESS REPORT 1984-85
8 pages. November 1984

SERC-UCFB-002
Arne Broman and Lars Broman
A SUN CELL CORNEL UNFOLDED
15 pages. June 1985

SERC-UCFB-003
Lars Broman and Arne Broman
A PARABOLOID REFLECTOR APPROXIMATED BY
SIMPLE SURFACES
9 pages. November 1985

SERC-UCFB-004
PROGRESS REPORT
9 pages. December 1986

SERC-UCFB-005
Lars Broman and Svante Nordlander
NEW SWEDISH SIMULATION AND DESIGN TOOL
FOR SOLAR HEATING SYSTEMS
In Swedish with abstract in English
43 pages. April 1987

SERC-UCFB-006
SERC RESEARCH PROGRAM 1987-1990
In Swedish with abstract in English
20 pages. April 1987

SERC-UCFB-007
Lars Broman
SOLAR ENERGY IN THE GAMBIA
In Swedish with abstract in English
13 pages. May 1987

SERC-UCFB-008
Mats Rönnelid
SOLAR ENERGY IN KARAGWE - REPORT FROM A
STUDY TOUR IN TANZANIA IN JULY 1987
In Swedish with summary in English
27 pages. August 1987

SERC-UCFB-009
Eric Bäve and Lars Broman
SERVICE NEEDS AND OPERATION EXPERIENCES
OF SOLAR COLLECTORS IN SMALL HOUSES.
A PRELIMINARY STUDY.
In Swedish with summary in English
20 pages. October 1987

SERC-UCFB-010
Lars Broman, Svante Nordlander
and Mats Rönnelid
SOLAR CORNERS FOR CONCENTRATION OF
SUNLIGHT ONTO SOLAR CELLS
In Swedish. 4 appendix and abstract in
English. 21 pages (appendix 23 pages).
December 1987

SERC-UCFB-011
Annette Henning
ENERGY EFFICIENT WOODFUEL STOVES -
WHERE TO FIND INFORMATION
17 pages. April 1988

SERC-UCFB-012
Lars Broman and Arne Broman
RAPPORT FRÅN / REPORT FROM INTERNATIONAL
CONFERENCE APPLIED OPTICS IN SOLAR ENERGY
PRAG/PRAGUE JULY 7-9 1987.
In Swedish with abstract in English.
14 pages. April 1988

SERC-UCFB-013
Lars Broman, Kent Börjesson, Svante
Nordlander and Mats Rönnelid
RAPPORT FRÅN / REPORT FROM ISBS SOLAR
WORLD CONGRESS HAMBURG SEPTEMBER 13-18
1987.
In Swedish with abstract in English.
28 pages. May 1988

SERC-UCFB-014
Olle Eriksson, Karin Widegren, Hans E.B.
Andersson, Göran Hultmark, Per Isaksson
and Arne Kaiser
SOLENERGIS FRAKTID I SVENSKA -
In Swedish. 62 pages. August 1988

SERC-UCFB-015
Anja Ott, Lars Broman, R.L. Datta, Lars
Kristoffersson, Varle Bokalders, Folke
Petersson and A.A.M. Sayigh.
SOLAR ENERGY FOR DEVELOPING COUNTRIES -
SOLAR ENERGY SEMINAR IN BORLÅNGE AUGUST
In English. 42 pages. August 1988

SERC-UCFB-016
Jan-Olov Dalenbäck, Weine Josefsson,
Clas-Göran Granqvist, Björn Karlsson, Bo
Nordell and Dag Sigurdh.
SOLENERGITEMNIK - SOLENERGISSEMINARIUM I
In Swedish. 66 pages. August 1988

SERC-UCFB-017
Lars Broman, Eduardo Figueroa, Per
Isaksson, Svante Nordlander and Mats
Rönnelid.
WORKSHOP ON PRESIM A GRAPHICAL
PREPROCESSOR FOR MODULAR SIMULATION
PROGRAMS E.G. TRANSYS.
In English. 50 pages. August 1988

SERC reports cost SEK 40:- and may be ordered from
SOLAR ENERGY RESEARCH CENTER
University College of Falun/Borlänge
P.O. Box 10064
S-781 10 Borlänge
SWEDEN