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Abstract. This study presents a novel approach to project status pre-
diction in software engineering, based on unobservable states of decision-
making processes, utilizing Hidden Markov Models (HMMs). By estab-
lishing HMM structures and leveraging the Rational Decision Mak-
ing model (RDM), we encoded underlying project conditions; observed
project data from a software engineering organization were utilized to
estimate model parameters via the Baum-Welch algorithm. The devel-
oped HMMs, four project-specific models, were subsequently tested with
empirical data, demonstrating their predictive potential. However, a
generalized, aggregated model did not show any sufficient accuracy.
Model development and experiments were made in Python. Our app-
roach presents preliminary work and a pathway for understanding and
forecasting project dynamics in software development environments.

Keywords: Project status · Software engineering · Hidden Markov
Model · Decision making · Project status prediction

1 Introduction

Effective decision-making plays a crucial role in steering software projects
towards success, as it directly impacts time management, resource allocation,
and quality control. Sound decisions can ensure that a project remain within
budget and deadlines while maintaining the expected level of quality [12]. Hence,
the ability to accurately predict project statuses through the understanding of
project decision-making processes, could ultimately contribute to more efficient
data-driven decision-making for project managers [1,7]. Addressing the com-
plexities of project status prediction is challenging due to the inherent hidden
processes of decision making. Our focus is thus to develop a predictive model
being able to forecast project status by capturing these underlying, unseen
decision-making processes. One approach to analyze non-observable processes
in a stochastic system is to use Markov models. Such models have been studied
in many different areas within the software engineering context [9], e.g., software
test result prediction [15] and system reliability analysis [2]. Also, specifically in
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IT-projects, Markov models have been used, e.g., risk prediction [5], developer
learning [13] and bug-fix prediction [3]. The aim of this study then, is to provide
preliminary results of modelling hidden decision-making processes in software
engineering projects, based on observed project status data. Our results will
provide for future interdisciplinary research where we can combine qualitative
approaches to better understand project decision-making, and fusing it into pre-
dictive models. The paper proceeds as follows: Sect. 2 explains hidden Markov
models, followed by our research method in Sect. 3. Our model is elaborated in
Sect. 4, and experimental results are showcased in Sect. 5. Finally, Sects. 6 and 7
discuss and conclude the results, respectively.

2 Hidden Markov Models

We briefly introduce the concept of a Hidden Markov Model (HMM), which is
a stochastic model used for representing a system that follows a Markov pro-
cess with unobserved states [6]. It defines a system where transitions between
states occur with certain probabilities and these transitions are inherently time-
discrete. The model have a set S = {s1, s2, ..., sN} of N states, which are hid-
den but can be inferred through a sequence of observable outputs from the set
O = {o1, o2, ..., oM} of M possible outputs. To transition between two hidden
states si and sj , the first-order Markov property must hold, i.e. the probability
of moving to the next state sj only depends on the current state si and not on
the sequence of previous states. If qt denotes the state at time t, the transition
probability from state si to state sj is expressed as:

aij = P (qt+1 = sj |qt = si) (1)

where each aij are the elements of a state transition matrix A which relates to
the emission probabilities:

bij = P (oj at time t|qt = si) (2)

referring to the probability of observing the j-th observation at time t, when the
system is in the i-th hidden state. These are collected into the emission matrix
B. These matrices are thus of the form:

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1N

a21 a22 · · · a2N

...
...

. . .
...

aN1 aN2 · · · aNN

⎤
⎥⎥⎥⎦B =

⎡
⎢⎢⎢⎣

b11 b12 · · · b1M

b21 b22 · · · b2M

...
...

. . .
...

bN1 bN2 · · · bNM

⎤
⎥⎥⎥⎦

We denote a model as λ = (A,B). There are three fundamental problems to
solve when dealing with a HMM, formulated by Rabiner [10]. Let Os = o1...ok be
a sequence of k observations from the observation set O, then the problems are: to
compute the likelihood of a sequence of observations Os given λ (i.e. P (Os)|λ)),
to identify the optimal sequence of hidden states for a provided sequence of
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observations Os and a HMM λ = (A,B), and to infer the probabilities in A
and B of the model for a specific sequence of observations Os and the state set
within the HMM. The first problem can be solved by the Forward-algorithm,
the second by the Viterbi algorithm and the third can be estimated using the
Baum-Welch algorithm [6].

3 Method

Our study is an experimental model evaluation study, based on real data from
the Swedish Transport Administration (STA). Hence, the results may not lead
to general conclusions. We used recorded project status data from a subset of
STA’s software engineering organization. The studied projects were similar in
scope and size (deliver software systems, between 4–7 team members), and all
included software development and agile practices. Each project had a project
manager and an annually planned budget.

Our study consists of two phases: develop the model, and experimental test-
ing of the model. We first establish the structure of our HMM:s, involving the
definition and probability estimations of the hidden states and the observable
outputs of our model. These states represent underlying conditions or factors
that drive the observed data but are not directly measurable. The hidden states
are based on the Rational Decision Making model as described in [14], which
includes seven different stages, whereas our model only consider four of them.
The observable output definitions are derived through an analysis of the com-
pany’s project tracking system and the specific project status data that is stored.
After developing the HMM we then tested the model using a subset of the
observed data that was not used for training, by computing the probability of
observing a specific sequence of emissions given the parameters of the model
[6]. During data extraction from the project tracking tool, we anonymized the
project meta data by listing all projects and then randomly assigning identities
Pi for i = 1, 2, ..., n. For each Pi, a CSV file containing the numerical encoding of
the observed output was created where each row consisted of k, tk, ck, qk where
k is the reporting date, and tk, ck, qk representing the reported values of time,
cost and quality at date k. From these CSV files, the parameter estimation, i.e.
estimating A and B, were derived using the Baum-Welch algorithm. We used
Python and the hmmlearn package [4] for encoding the collected data, building
the HMM proof of concept implementation and prediction testing.

3.1 Rational Decision Making

Rational decision-making, as defined by Scott and Bruce [11], includes a thorough
investigation for data and a logical analysis of various alternatives, emphasizing
systematic, goal-oriented decision processes. It underscores planning and verifi-
cation of information sources to ensure accurate facts. Rational decision-making
presumes that with complete information, individuals can discern all potential
solutions and choose the one maximizing their outcome [8]. In the context of
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the company we studied, this model is notably relevant as their projects largely
revolve around long-term, standard activities, although adopting agile best prac-
tices, rather than innovative or research-oriented activities.

We have chosen four essential stages of decision making, derived from the
seven stages of the Rational Decision-Making (RDM) model in [14]. The cho-
sen stages are “Identifying the Solution”, “Information Gathering and Analysis”,
“Evaluate Options”, and “Implementing Decision”. The rationale for selecting
these specific stages is twofold. Firstly, they provide the core of decision-making,
simplifying the process while ensuring systematic considerations. Secondly, they
include the logical steps in project decision-making by identifying solutions
upfront, conducting thorough analysis, evaluating potential options, and imple-
menting the chosen decision. These stages thus highlight the essence of software
engineering project management: discerning issues and making informed deci-
sions.

We work under the assumption that decision-making, especially as demon-
strated in agile software engineering projects [1,8], strongly influences project
performance and therefore should effectively define the hidden states of project
progression. The decision-making process with four simplified stages is then
established as a single influential factor for project success, setting the initial
step towards a project status prediction model based on empirical data. We
firmly believe that future expansions of this model should take into account
multiple influencing parameters such as organizational culture and other socio-
psychological aspects. Although this may necessitate qualitative and mixed-
method approaches, it holds the potential to significantly enhance our model’s
effectiveness.

4 Model Development

Our collected data consisted of project status reports from 4 different projects
P1, ...,P4, spanning over 36 months, ending in May 2023. The projects were
chosen out of 11 available projects, but the remaining 7 projects did not have
historical data more than 14 months. The projects had an increasing status
fluctuation where P1 changed between 3 states in long cycles (up to 8 months),
and P4 changed between 7 states with cycles between 1 and 4 months. There
is no information of any change of decision states in the projects between these
4 weeks. Therefore, we need to consider a HMM due to the non-observable
states in-between reporting of the project status. The project tracking tool uses
traffic-light encoding on the three dimensions time, cost and quality, where red
equals “Bad status”, yellow equals “Acceptable status”, and green equals “Good
status”. We encode these into numerical values 0 (bad), 1 (acceptable) and 2
(good). Thus, our model have 27 different observable outputs where observation
is defined as follows:
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Definition 1. Let o = (τT , τC , τQ) be a tuple, representing an observation of
the model where the dimensions τT is time, τC is cost, and τQ is quality. Each
dimension has a discrete value of either 0,1 or 2.

The set of states for our HMM is S = {s1, s2, s3, s4}, defined as identify,
analyze, evaluate and implement, respectively, hence representing the project’s
decision-making status. Each observation o is represented as a tuple in Defini-
tion 1, with a date stamp k, thus allowing for records of temporal sequences of
the observations for a project Pi. This setup results in 27 possible observations
each project can inhabit and 4 different states. The emission matrix B is thus
of size 4 × 27.

4.1 Parameter Estimation

The notion of parameter estimation is the third problem stated by Rabiner,
i.e. of computing suitable state transition probabilities for A and B. Several
different methods are used in practice, but the Baum-Welch method is one of
the more commonly used one [6]. We implemented a HMM λ = (A,B) using
the Baum-Welch algorithm for estimating the transition probabilities, using the
hmmlearn Python package. Each project Pi’s CSV file with project status data
was fed into the HMM via an encoding function we wrote for encoding each
entry (ck, tk, qk) into a corresponding integer representing the observation. The
mapping is in increasing order where (0, 0, 0) → 0 up to (2, 2, 2) → 26. The HMM
was then computed using the hmm.CategoricalHMM model, and the parameters
were estimated using the model.fit() function. In total we used extracted data
from the projects P1–P4, each project containing 36 rows of data points.

5 Experimental Results

We conducted two separate experiments. First, each project Pi was trained into
a separate HMM λi = (Ai,Bi), using the above described parameter estimation.
These were then tested for status prediction. In the testing phase, the parameter
estimations were updated in iterations, until the best fit was found, i.e. the model
that gave the most accurate prediction when executing the model.predict()
function. Next, we aggregated each λi into one large model λ to compare a more
generalized model with the project specific models. This was done by using
weights wi from each model, based on the accuracy from the testing phase. For
a better readability, we created heat maps for each emission matrix. The devel-
oped models λ1–λ4 had the following transition matrices and the corresponding
emission matrices are shown as heat maps in Fig. 1:

A1 =

⎡
⎢⎢⎣
0.09 0.00 0.36 0.55
0.00 0.47 0.01 0.52
0.01 0.16 0.83 0.00
0.82 0.11 0.02 0.07

⎤
⎥⎥⎦A2 =

⎡
⎢⎢⎣
0.21 0.00 0.60 0.19
0.31 0.69 0.00 0.00
0.11 0.61 0.26 0.12
0.00 0.00 0.09 0.91

⎤
⎥⎥⎦



180 H. Salin

A3 =

⎡
⎢⎢⎣
0.00 1.00 0.00 0.00
0.21 0.78 0.01 0.00
0.38 0.24 0.00 0.38
0.42 0.54 0.00 0.04

⎤
⎥⎥⎦A4 =

⎡
⎢⎢⎣
0.87 0.00 0.00 0.13
0.03 0.00 0.42 0.55
0.12 0.00 0.00 0.88
0.03 0.84 0.13 0.00

⎤
⎥⎥⎦

Fig. 1. The computed emission matrices B1, ...,B4 for models λ1, ..., λ4, represented
as heat maps. The bar shows probability measure.

Note that due to readability, we rounded each probability into two decimals,
hence some entries with 0.00 might be a non-zero probability but lower than
0.01. Each model was tested on the observed states o27, ..., o31 from the collected
observations of each project, letting the model predict the 5 next future observa-
tions using the model.predict() function. We compared these with the actual
observations o32, ..., o36, computing the model’s accuracy. The resulting accuracy
for each model were 0.8,0.5,0.8 and 0.9 respectively. The accuracy was computed
as the frequency the model successfully predicted the output, where 1.0 means
100% accuracy. For the aggregated model we computed the weights wi for each
HMM: wi = αi

σ where αi is the accuracy of λi and σ =
∑4

j=1 αj . These were
used in the weighted calculation of the aggregated matrix A =

∑N
i=1 wi∗Ai. The

same procedure was made for the aggregated matrix B. Due to space constraints
we only show A:
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A =

⎡
⎢⎢⎣
0.32 0.26 0.25 0.17
0.12 0.45 0.13 0.30
0.15 0.21 0.27 0.37
0.33 0.43 0.06 0.18

⎤
⎥⎥⎦

To compute the matrices we used the weights w1 = 0.267, w2 = 0.167, w3 =
0.267 and w4 = 0.300. The aggregated model λ = (A,B) was then tested on a
sequence o′

27, ..., o
′
31 selected from a random project Pi. The computed accuracy

was only 0.2 with the aggregated models, and we did not get any better result
trying other models with lower accuracy.

6 Discussion

The increasing fluctuation of observable states of the projects (from the extracted
project data) are reflected by the emission matrices, where P1 had the least jumps
between project status states (stable project) and P4 had most jumps (unstable
project). In models λ1 and λ2, there is a strong tendency to remain in the evaluate
state, indicating a process that relies on evaluation and adjustment. However,
λ2 also shows a tendency for the analyze state to transition back to identify,
suggesting a cycle of redefining problems during the analysis phase. λ3 shows an
immediate transition from identify to analysis and has a significant likelihood
of identifying new problems during the analysis and decision implementation
stages. λ4 depicts a fast-track decision-making process that often bypasses the
evaluate stage, with a strong tendency to revisit the analyze stage during imple-
mentation, suggesting iterative refinement or correction. Together, these models
suggest a range of decision-making behaviors, from reflective and evaluative to
direct and iterative. The aggregated model λ had a very low accuracy and it
would be a natural consequence due to the largely different sub models. We
interpret this as the need for customized project models are necessary, given
the proposed, yet simple, model development. Most importantly, future research
must validate and refine these suggestions, and we propose qualitative methods
to cross-check these findings with the decision-makers.

7 Conclusion

The models were trained on relative small data sets, but were still able to perform
sufficient predictions in most cases, i.e. better than random guessing. Due to its
simple implementable nature, the project specific models can serve as a basis for
further development of project status prediction using sophisticated and novel
approaches in fine-tuning the parameters further. There is no fruitful effect of
aggregate the models, thus keeping them project specific is the most efficient
approach. The anonymized data sets for training and testing, and the developed
boiler plate code can be found at github.com/hannessalin/research-code.

https://github.com/hannessalin/research-code
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