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A B S T R A C T   

Partial multi-label learning (PML) addresses problems where each instance is assigned a candi-
date label set and only a subset of these candidate labels is correct. The major challenge of PML is 
that the training procedure can be easily misguided by noisy labels. Current studies on PML have 
revealed two significant drawbacks. First, most of them do not sufficiently explore complex label 
correlations, which could improve the effectiveness of label disambiguation. Second, PML models 
heavily rely on prior assumptions, limiting their applicability to specific scenarios. In this work, 
we propose a novel method of PML based on the Encoder-Decoder Framework (PML-ED) to 
address the drawbacks. PML-ED initially achieves the distribution of label probability through a 
KNN label attention mechanism. It then adopts Conditional Layer Normalization (CLN) to extract 
the high-order label correlation and relaxes the prior assumption of label noise by introducing a 
universal Encoder-Decoder framework. This approach makes PML-ED not only more efficient 
compared to the state-of-the-art methods, but also capable of handling the data with large noisy 
labels across different domains. Experimental results on 28 benchmark datasets demonstrate that 
the proposed PML-ED model, when benchmarked against nine leading-edge PML algorithms, 
achieves the highest average ranking across five evaluation criteria.   

1. Introduction 

Traditional multi-label learning (MLL) deals with the problem of assigning multiple labels to each instance simultaneously by 
assuming that each instance in the training set is accurately labeled with relevant labels. However, this assumption is too strict to hold 
in most application scenarios. In practice, due to the ambiguity of data features or the oversight of annotators, irrelevant labels often 
exist in real-word data. For example, the annotator may be not sure whether the dog in Fig. 1 is an Alaskan Malamute or a Husky. No 
labeling will result in a loss of information and random annotation will mislead the classifier. As a result, annotating all possible labels 
may be a practical choice. In the real world, weakly supervised data like this is very common [14,20,36] and partial multi-label 
learning (PML) serves as a framework for handling such situations within weakly supervised learning, where each instance is 
assigned a set of candidate labels and only a portion of them are relevant labels. The core task of PML is thus to mitigate the effects of 
noisy labels to train an effective multi-label classifier. 

* Corresponding authors. 
E-mail addresses: wzw@cumtb.edu.cn (Z. Wang), sqt2200405092@student.cumtb.edu.cn (F. Liu), mea@du.se (M. Han), sqt2000405094@ 

student.cumtb.edu.cn (H. Tang), wanbenting@jxufe.edu.cn (B. Wan).  

Contents lists available at ScienceDirect 

Information Sciences 

journal homepage: www.elsevier.com/locate/ins 

https://doi.org/10.1016/j.ins.2024.120165 
Received 30 July 2023; Received in revised form 24 November 2023; Accepted 14 January 2024   

mailto:wzw@cumtb.edu.cn
mailto:sqt2000405094@student.cumtb.edu.cn
mailto:mea@du.se
mailto:sqt2000405094@student.cumtb.edu.cn
mailto:sqt2000405094@student.cumtb.edu.cn
mailto:wanbenting@jxufe.edu.cn
www.sciencedirect.com/science/journal/00200255
https://www.elsevier.com/locate/ins
https://doi.org/10.1016/j.ins.2024.120165
https://doi.org/10.1016/j.ins.2024.120165
https://doi.org/10.1016/j.ins.2024.120165
http://creativecommons.org/licenses/by/4.0/


Information Sciences 661 (2024) 120165

2

PML, first proposed in 2018 [36], has become a cutting-edge research issue in machine learning. It can be considered as the fusion 
of MLL [10,48] and partial label learning (PLL) [2,4]. Specifically, while both MLL and PML models complete the task of multi-label 
classification, the former learns from the true label set and the latter learns from the candidate label sets with pseudo-positive labels. 
Both PLL and PML models train a classifier from datasets with noisy labels. However, while PLL only has one ground-truth label in the 
candidate label set, PML can have multiple ground-truth labels. Thus, the task for PML is more challenging than solving the problems of 
MLL and PLL. 

To solve PML problems, an intuitive strategy is to consider the candidate label set as the true label set and use ready-made MLL 
methods to derive a multi-label classifier. However, this approach might lead the classifier to be misled by noisy labels in the candidate 
label set, greatly deteriorating its performance. In recent years, many PML methods have been proposed, which can be roughly divided 
into two categories: pipeline methods (PPMs) [3,13,34,46] and joint recognition methods (JRMs) 
[11,12,16,17,19,21,27,28,29,30,33,36–45,49]. The PPM, a two-stage model, first identifies highly credible labels from the candidate 
label set through methods like an iterative annotation matrix [46] or KNN minimum error reconstruction [3,13,34], and then uses 
existing MLL algorithms for classification tasks. However, most PPMs adopt a one-hot style to express labels. It not only fails to reflect 
the complex correlations among labels, but also propagates the label prediction errors generated in the first stage, thus affecting the 
overall the model performance. 

The JRMs presuppose a specific relationship between sample features and labels and optimize PML models under this constraint. 
For example, some works [16,19,21,22,36,45] assume that the label co-occurrence and feature similarity should be consistent. Others 
[28,29,37] assume sparse label noise and low-rank true labels. It has also been assumed that the sample features and labels can be 
decomposed and represented into the same subspace [27,44,49]. While these methods [3,13,16,19,21,22,28,29,34,36,37,45,46,49] 
have made great progress in handling PML problems, their strong prior assumptions on samples limit their applicability in diverse 
application scenarios with large noisy labels and in effectively utilizing high-order label correlations to improve classification 
performance. 

In this work, we propose a novel method of PML based on the universal Encoder-Decoder framework (PML-ED), which sets out to 
simultaneously solve the abovementioned drawbacks of PPMs and JRMs. The main contributions of this paper are summarized as 
follows.  

1. A universal PML model under the Encoder-Decoder framework is proposed, where fewer prior assumptions and inductive bias 
make it applicable to handle the different scenarios with large noisy labels. 

2. An exploration method of high-order label correlations is proposed. It introduces the Transformer-Block and the model of Con-
ditional Layer Normalization (CLN) to extract the high-order label correlation, which enhances the classification performance.  

3. A method of generating the credible label distribution is proposed by using the mechanism of KNN label attention in label space, 
which makes the prediction of labels more accurate than the one-hot style.  

4. An in-depth experimental analysis is carried out on twenty-eight datasets across five evaluation criteria, thus obtaining a 
comprehensive comparison among nine PML methods. 

To our knowledge, this work is the first to introduce the Encoder-Decoder framework to handle the PML problems, which can not 
only extract the label probability distribution and explore the high-order label correlations by using the CLN model and the method of 
KNN label attention, but also relaxes the prior assumption to handle various PML application scenarios with large noisy labels. 

Fig. 1. An example of PML dataset.  
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The rest of this paper is organized as follows. The related work of PML is described in Section 2 and the principles of the proposed 
PML-ED model are described in Section 3. In Section 4, we describe the experiment environments, the evaluation criteria, and the 
benchmark datasets. We also present a comprehensive comparison of experimental results, the analysis of time complexities, the 
discussion of model interpretability, the convergence analysis, and the statistical test of the experimental results in this section. 
Limitation and discussion are detailed in Section 5. We conclude the paper in Section 6 with an indication of our contribution to this 
research area and our future work. 

2. Related work of PML 

As mentioned in Section 1, PML models can be roughly divided into PPMs [3,13,18,34,46] and JRMs 
[11,16,17,19,21,22,27,28,29,30,33,36–45,49]. They will be reviewed in sequence in this section. 

2.1. Pipeline methods (PPMs) 

For the PPMs, He et al. [13] proposed a PML approach to discriminatively relabel for PML (DR-PML), which adopted the idea of 
Bootstrap to identify the true labels iteratively. Specifically, the DR-PML initially took the candidate labels as the true labels, used them 
to train a linear classifier model and utilized a soft sign thresholding operator to enlarge the difference of label confidences. It then re- 
predicted the true labels from the candidate label set and iteratively executed the above process. However, the simple threshold 
operator cannot handle complex label noises. A PARTICLE model [46] first adopted the method of iterative label propagation to 
estimate the labeling confidence of candidate labels for each PML training example. By using high-confidence labels, it then induced 
the MLL classifier via pairwise label ranking coupled with virtual label splitting or maximum a posteriori (MAP) reasoning. However, 
PARTICLE only extracted the second-order label correlation and the insufficient exploration of label couplings weakened the classifier 
performance. To further explore label correlations, Wang et al. [34] presented a two-stage discriminative and correlative PML 
(DRAMA) algorithm, which first utilized the feature manifold to learn a confidence value for each label and then adopted a gradient- 
boosting model to fit the label confidences. To explore the label couplings, DRAMA augmented the feature space by the previously 
elicited labels on each boosting round, but it rarely considered the noise in the features, which may mislead the label identification in 
the second stage. A GRADIS [3] utilized a similar strategy to PARTICLE [46], with the difference lying in the second stage. The second 
stage of GRADIS was built on the concept of multi-view and integrated clustering information. A PAMB [18] utilized binary 
decomposition to handle PML training examples, where the techniques of error-correcting output codes (ECOC) were adopted to 
transform PML problem into a number of binary learning problems. 

In summary, all the above PPMs [3,13,18,34,46] have adopted the one-hot style to characterize label information. They are not able 
to explore the complex correlations among labels. In addition, the errors in the first stage of the PPMs are easy to spread to the second 
stage, especially when the dataset has many label noises and the models cannot correctly estimate the confidence of labels. 

2.2. Joint recognition methods (JRMs) 

Unlike the taxonomies of JRMs in other literature, this work classifies them based on the prior assumptions of PML. The JRMs 
[11,16,17,19,21,22,27,28,29,30,33,36–45,49] can be roughly divided into the following five categories. 

2.2.1. Consistency assumption of label co-occurrence and feature similarity 
The first category [16,21,22,36,45,49] is based on the consistency assumption of label co-occurrence and feature similarity. They 

have attempted to model the correlations between instance features and labels. Xie et al. [36] proposed a PML problem for the first 
time, which combined the label ranking with confidence to identify true labels. They proposed a PML-fp method to calculate the label 
confidence by using the label ranking loss and to obtain the label correlations through the confidence and label co-occurrence rela-
tionship. Another PML-lc model assumed that each label has a feature prototype and utilized it to extract label correlation, where the 
feature prototype is the average value of all feature vectors associated with specific labels. A HALE model [22] constructed the graph 
structure by using the similarities between features and labels. It expanded the traditional probability graph matching algorithm from 
one-to-one constraints to many-to-many constraints. A PML-LFC model [45] assumed that noise comes from samples with low feature 
similarity and low label similarity. It estimated the confidence values of relevant labels for each instance by using the similarity from 
both the label and feature spaces and trained the classifier with the estimated confidence values. A NATAL model [21] assumed that all 
the labels were true labels and features were incomplete. It transformed the PML into the problem of feature completion. NATAL also 
constrained the low rank of the missing feature matrix, the sparsity of the completion matrix, and the consistency of the label co- 
occurrence and feature similarity. In order to solve the defect of co-occurrence, a PML-SALC model [49] realized that label correla-
tion is asymmetric. The model obtained the label confidence by using a semi-symmetric matrix of label correlation to mitigate the 
negative impact of noise labels. Li et al. [16] considered that the similarity between two instances may be different in different label 
spaces and tried to extract the label-specific features for disambiguation. 

Thus, the first category of JRMs [16,21,22,36,45,49] aims to execute label disambiguation by assuming the consistency between 
label co-occurrence relationship and feature similarity. However, such assumptions often mislead the models under the influence of 
feature noise and label noise. For example, label co-occurrence is extremely low in a highly sparse label space so that the models can 
ignore the correct samples. Therefore, these methods struggle to effectively utilize complex label correlations and also fail to handle a 
large number of noises in the samples. 
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2.2.2. Noise sparse assumption 
The second category [28,29,33,37] assumes that the label noise is sparse. It was pointed in a PML-LRS model [29] that the matrix of 

irrelevant labels is sparse and the matrix of relevant labels is low-ranked. Specifically, the PML-LRS, based on linear regression, 
regarded the matrix of candidate labels as the sum of the matrices of true labels and noise labels by minimizing the kernel norm of the 
matrix of true labels, the 1-norm of the matrix of noise labels, and the kernel norm of the parameter matrix. A PML-NI model [37] 
considered the parameter matrix as the sum of the multiple-label classifier and the noise recognizer by minimizing the kernel norm of 
the classifier matrix and the 1-norm of the matrix of the noise recognizer. To improve the noise identification process, a PML-NSI model 
[28] converted the feature matrix into the matrices of true features and noise features, where the former is constrained to be a low rank 
and the latter is sparse. The manifold representation was obtained through KNN minimum error reconstruction and the similarity 
between adjacent manifolds was minimized to ensure that the internal structure is unchanged. Wang et al. [33] addressed the issue of 
high-dimensional feature space, which previous methods ignored, by proposing the feature selection method PMLFS. The method 
projected feature space into the matrices of true labels and noise labels, which constrained the former to be low rank and the later to be 
sparse. 

As mentioned above, the second category [28,29,33,37] can handle the situation of sparse noise, but cannot handle a large number 
of noisy labels. For example, when there is a large number of noisy labels, the matrix of noise labels and sparse constraint may fail to 
work. In addition, due to their inability to utilize high-order label correlations, these methods might incorrectly identify label noise. 

2.2.3. Low rank assumption 
The third category of JRMs [11,17,19,27,30,41,44] assumes that the relationship between labels and features can be obtained in 

the low-rank-represented sub-space, thus filtering the label noises. An fPML model [44] assumed that labels and features can be 
presented in a unified space and the noise would disappear in a low-rank space. It thus converted the matrices of instance-label and 
instance-feature into the low-rank matrices in the same space and converted PML into a problem of low-rank decomposition of the 
matrix. An IMVPML model [19] considered PML as a problem of incomplete views and redundant labels. The study employed the 
method of negative matrix factorization (NMF) to learn shared subspaces from incomplete views and used matrix of true labels to 
identify true labels. Considering that a single low-rank subspace (such as IMVPML) cannot handle the data from multiple subspaces, a 
GLC model [27] jointly utilized the global and local labels to enhance the classifier performance. Specifically, from a global 
perspective, the GLC represented the candidate labels by combining the matrices of the label coefficient in multiple subspaces with the 
noise matrix, where the matrices of the label coefficient are low-ranked and the noise matrix is sparse. From a local perspective, the 
GLC obtained the label correlation by learning the consistency between the matrices of the label coefficient and the prediction model. 
A PML-LMNNE model [11] projected features and labels into a low-dimensional embedding space, making the features of an instance 
closer to its own labels and further away from its nearest neighbor instances. However, PML-LMNNE only considered the local 
structure when calculating the similarity of nearest neighbors, which leads to poor performance when dealing with data with complex 
distribution. A PML-LCD model [41] calculated the label matrix by utilizing the low rank constraint. It abandoned the sparse 
assumption of the noise matrix and showed better robustness to label noise compared with the sparse-assumption-based method, for 
example, the PML-LRS [29]. A PML-LCom model [30] first modeled the matrix of sparse noise labels and then reduced the label di-
mensions to a low-rank space. However, the compression of labels can result in the loss of certain label information. Considering the 
noise in the feature space, Li et al. proposed a MUSER model [17]. It mapped the original noisy feature space to the feature sub-space by 
utilizing the correlation between features, thereby reducing feature noise and generating the discriminative features. 

Thus, it can be inferred from the above that the sub-space models in the third category [11, 17, 19, 27, 30, 41, 44,] are only 
adaptable to independent data within each sub-space in the high-dimensional space. The models face difficulties in recognizing certain 
nonlinear low-dimensional manifolds [4]. 

2.2.4. Smoothness assumption 
Under the smoothness assumption, similar samples in the feature space should have similar labels. In PML methods, most models 

adopt the smoothness assumption while also incorporating other prior assumptions. Only the methods of label distribution learning 
[38,39] have exclusively utilized this assumption. A PML-LD model [38] reconstructed the matrix of feature similarity using local 
similar features. It then adopted Tulaplace algorithm to constrain the correlation between label distribution and label similarity 
matrices. After obtaining the label distribution, the probability of each label was extracted by using the method of multiple output 
regression (MOR). However, PML-LD did not utilize the label distribution to explore label correlation and combine it with the MOR 
stage. In order to make the label distribution differentiable, a PENAD model [39] mapped the local linear relationship of labels to the 
label distribution, which transferred the local topological structure of feature space to the label distribution space. However, the MOR 
method in PENAD is too simple to handle complex noise situations. 

2.2.5. Deep learning based JRMs 
Recently, some deep learning (DL)-based PML methods have been proposed. For example, a PML-SE method [43] adopted the Mean 

Teacher method [31] to train student and teacher networks to reduce the labels prediction bias. A PML-MT method [40] was also based 
on the teacher-student model. Compared with PML-SE, it added the output labels consistency among student and teacher networks. 
However, the teacher networks of PML-SE and PML-MT are easily affected by the gradient of noise labels. A PML-GAN model [42] 
improved the prediction performance by fitting the bidirectional mapping relationship between input features and output labels. 
However, the generator of PML-GAN may generate noisy features, leading to misguidance of discriminator and prediction networks 
and causing the entire Generative Adversarial Network (GAN) to be misleading when it classifies labels. 
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2.3. Summary 

As discussed in Section 2.2.1 ~ 2.2.3, the JRMs [11,16,17,19,21,22,27,28,29,30,33,36,37,41,44,45,49] constructed PML models 
under strong prior assumptions, such as the consistency between label co-occurrence and feature similarity [16,21,22,36,45,49], the 
low rank of subspaces [11,17,19,27,30,41,44], and the sparse noise [28,29,33,37]. These assumptions make them difficult to explore 
high-order label correlations and narrow the application scenarios. In addition, almost all the aforementioned JRMs adopt a one-hot 
style to express the authenticity of the labels. The absolute expression of label prediction is prone to error propagation in label pre-
diction. Thus, these drawbacks in JRMs hinder their ability to explore high-order label correlations and limit their applicability to 
various scenarios, such as identifying nonlinear, low-dimensional manifolds [15]. The JRMs based on smoothness assumption [38,39] 
can use local features to filter label noise. However, label distribution has not been utilized to exact label correlations that may enhance 
the classification performance in PML. For the recently proposed deep learning-based JRMs [31,40,42], the teacher-student model 
[40,43] does not filter noise in label space and its performance is affected by the outliers. Without using correlation to filter noises in 
feature and label spaces, PML-GAN [42] may mislead the discriminator and prediction networks. 

In summary, current studies of PML have two drawbacks: (1) Strong prior assumption makes PML methods only suitable for specific 
application scenarios. (2) Insufficient exploration of label correlations weakens the effectiveness of label disambiguation. In order to 
address these drawbacks, we propose a novel PML method based on the Encoder-Decoder (ED) framework (PML-ED), where ED is a 
common DL framework without strong prior assumption. Specifically, PML-ED first achieves the label probability distribution (rather 
than one-hot style) by using the mechanism of KNN label attention in label space. The method explores the high-order label correlations 
through the method of CLN feature enhancement. It further introduces and implements a highly versatile ED framework to reduce the 
prior assumption of label noise and handle a wide range of application scenarios. In Section 3, we will discuss the principle of PML-ED 
in detail. 

3. The principle of the PML-ED method 

We denote X = Rd as a d-dimensional instance feature space and Y =
{
l1, l2,⋯, lq

}
as a label space with q labels. The training 

dataset of PML is defined as D =
{(

xi, ŷi
)
1 ≤ i ≤ m

}
, where xi ∈ X represents the ith instance with d-dimensional features and ŷi ∈

R1×q represents the candidate label set. We also assume that yi ∈ {0,1}1×q (yi⊂ŷi) is the true label set of xi. The goal of PML is to obtain 
a multi-label classifier f : X →Y based on the training dataset D. 

3.1. Overall Description of the PML-ED method 

Encoder-Decoder is a deep learning (DL) framework. As the basis of classic DL models, it is commonly used for the learning tasks of 
sequence to sequence, such as NMT [1], Transformer [32], and T5 [23]. In this work, we innovatively implement and apply the 

Fig. 2. The architecture of the PML-ED method.  

Z. Wang et al.                                                                                                                                                                                                          



Information Sciences 661 (2024) 120165

6

Encoder-Decoder framework to extract label correlations and execute label disambiguation both in the feature and label spaces. 
The proposed PML-ED method consists of two stages. In the first stage, a credible label distribution is learned from the candidate 

labels (Section 3.2). In the second stage, by using the Encoder-Decoder framework, the high-order label correlation is extracted. The 
information coordination of feature and label spaces is utilized to derive the true labels of test instances (Section 3.3 and 3.4). The 
overall architecture of the PML-ED method is described in Fig. 2 and in the sections that follow, each step will be explained in detail. In 
addition, we will specifically discuss the process of PML-ED for handling noisy labels in Section 3.5. 

3.2. Learning of credible label distribution 

In the classic Transformer model [32], the attention mechanism is only utilized in the feature space. In this work, it will be used in 
the label space to extract credible label distribution for the first time. For PML applications, most of the feature information of the 
samples is credible and the corresponding feature noise is sparse. Thus, we utilize the similar relationship of sample features to derive 
the label distribution for reducing the interference of noise labels. 

The proposed PML-ED model uses the mechanism of KNN label attention [35] to assign labels’ weights based on the similarity of the 
features among samples and to calculate the credible label distribution based on the labels of neighboring samples. For each sample xi 
in training set D, its k nearest neighbors (KNN) are chosen from D as the samples according to the Euclidean distance between xi and 
other samples in D. 

Suppose that N i represents the set of KNN samples of xi and xt ∈ N i. As defined in Eq. (1), the feature values of N i constitute Ki and 
the corresponding labels form Vi 

Ki = [xt]k×d
Vi = [ŷt]k×q.

(1) 

Thus, the credible label distribution of xi can be defined in Eq. (2), where softmax( • ) represents the softmax function. 

pi = softmax
(

xiKi
⊤

̅̅̅
d

√

)

Vi (2)  

3.3. Exploration of label correlations under the Encoder-Decoder framework 

In the second stage, pi is input into the Encoder-Decoder framework to extract high-order label correlation, where the Encoder 
module obtains the label semantic embedding of sample features and the Decoder module is responsible for decoding the label cor-
relations. 

3.3.1. Encoder 
The Encoder module converts xi into the label semantic matrix Li ∈ Rq×h, where h is the size of semantic embedding. Specifically, 

the multi-view feature extractor, implemented by the convolution layer, is used by the Encoder for semantic extraction. As indicated in 
Eq. (3), a residual connection is made between the original features xi and the local features derived by the convolution and maximum 
pooling to avoid the loss of original information: 

ĉje = ReLU
(
xe:e+w− 1

i Wj + bj
)

cj = max
([

ĉ⊤

j1, ĉ⊤

j2,⋯, ĉ⊤

j(d− w+1)

]⊤ )
+ xi.

(3) 

In Eq. (3), e (1 ≤ e ≤ d) is the serial number of the sliding window and j (1 ≤ j ≤ q) is the number of views. xi
a:b represents the 

vector truncated by the sliding window at the subscript range [a,b], w is the size of the sliding window of the convolution layer, Wj ∈

Rw×d is the parameter of convolution operation, bj ∈ R1×d is the offset parameter, and ReLU( • ) is the ReLU function. max(T) represents 
the function that obtains the maximum value for each column of the matrix T to achieve the salient features under each view. 

q feature extractors acquire the features from q different views and project them onto the original feature space. As seen in Eq. (4), 
the semantic vector of label lj is defined as lj and all the semantic vectors of q labels form the label semantic matrix Li ∈ Rq×h: 

lj = cjWl + bl

Li =
[
l⊤1 , l

⊤
2 ,⋯, l⊤q

]⊤
,

(4)  

where Wl ∈ Rd×h and bl ∈ R1×h are the learnable parameters. 

3.3.2. 3.3.2.Decoder 
Decoder is responsible for further decoding the label semantics extracted by the Encoder module and exploring the high-order 

correlations in the label semantic embedding. Firstly, the Decoder module utilizes the method of maximum pooling to extract the 
salient semantic features as the vector of label representation Ic ∈ R1×h, namely 

Ic = max(Li). (5) 
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Conditional Layer Normalization (CLN) [26] and Transformer-Block [32] are then used to extract the label semantics layer by layer, 
where CLN transforms the label distribution derived by the Transformer-Block module to obtain the high-order correlations among 
labels. A recursive process of updating the Decoder, Hl is given in Eq. (6) and it terminates until Hdec is obtained, where dec is the total 
layer number of the Decoder. 

H1 = Li
Hl = CLN(Transformer-Block(Hl− 1), Ic )

, 1 ≤ l ≤ dec (6) 

Specifically, CLN dynamically generates conditional gain γc and bias βc according to the input vectors, which changes the distri-
bution of original input by learning from the mean and variance. In this way, the vector of label representation Ic that is given is 
encoded into γc and βc and then integrated into the label semantic representation. The detailed process of CLN is defined in Eq. (7) 

CLN(hi, Ic) = γc ⊙

(
hi − μ

σ

)

+ βc

γc = IcWγ + bγ , βc = IcWβ + bβ,

(7)  

where ⊙ represents the operator of element wise-product, hi ∈ R1×h (1 ≤ i ≤ q) is the ith row vector of Hl, μ, σ ∈ R are the mean and 
variance of Hl, respectively. γc and βc ∈ R1×h represent the conditional gain and bias. Wγ ,Wβ ∈ Rh×h, bγ and bβ ∈ R1×h are the learnable 
parameters. 

The Transformer-Block consists of an attention layer and a layer of full connection feedforward network (FFN). For the recursive 
input label semantic representation L ∈ Rq×h, the attention layer can reduce the concern for unimportant labels while maintaining the 
same concern for current labels as defined in Eq. (8) 

Attention(L) = softmax
(

QK⊤

̅̅̅
h

√

)

V. (8) 

In Eq. (8), the following equations hold Q = LWq,K = LWk and V = LWv. Wq ∈ Rh×h,Wk ∈ Rh×h, and Wv ∈ Rh×h are the weight 
matrices of Q,K , and V. Residual connection and layer normalization defined in Eq. (9) are then used to improve the stability of the 
attention module 

A(L) = LayerNorm(Attention(L)+L ). (9) 

The results are utilized as the input to the feedforward network of Transformer-Block. The FFN layer can provide the capability of 
nonlinear transformation. Suppose that the input matrix of FFN is L ∈ Rq×h: 

FFN(L) = ReLU(LW1 + b1)W2 +b2 (10)  

where W1 ∈ Rh×dm , b1 ∈ R1×dm ,W2 ∈ Rdm×h (dm = 4d) and b2 ∈ R1×h are the learnable parameters. The residual connection and layer 
normalization are also used for the FFN layer as defined in Eq. (11) 

F(L) = LayerNorm(FFN(L) + L ) . (11) 

Thus, the Transformer-Block can be defined in Eq. (12). 

Transformer-Block(L) = F(A(L) ), (12)  

which can not only obtain the label weight by using the attention mechanism, but can also solve the problem of long-distance de-
pendency between feature representations. In addition, the characteristic of less inductive bias of the Transformer-Block enables the 
PML-ED model to adapt to various application scenarios. 

3.4. Model training and label prediction 

Finally, the label semantic matrix Hdec is projected onto the label space R1×q 

qi = Sigmoid
(
WprojH⊤

dec +bproj
)

(13) 

where Wproj ∈ R1×h and bproj ∈ R1×q are the learnable parameters. In order to train the PML-ED model, the global optimization 
function J (Θ) is expressed as 

J (Θ) = min
Θ

∑m

i=1
[ − pilog(qi) − (1 − pi)log(1 − qi) ], (14)  

where θ1 and θ2 (Θ ≜ {θ1, θ2}) represent the learnable parameters of the Encoder and Decoder, respectively. 
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The flowchart and the implementation steps of PML-ED are outlined in Fig. 3 and Algorithm 1, respectively.  
Algorithm 1. PML-ED 

Input: the training set D, the number k of nearest neighbor samples, threshold α, test sample xt 

Output: the predicted labels of xt 

Steps: 
//training process  
1. for each sample xi in D  
2. find N i and calculate Ki and Vi according to Eq. (1).  
3. calculate the credible label distribution pi according to Eq. (2).  
4. calculate the different view features cj by Eq. (3), 1 ≤ j ≤ q.  
5. calculate label semantic matrix Li by Eq. (4).  
6. calculate Hdec by Eq. (6) and obtain label vector qi by Eq. (13).  
7. optimize parameters Θ according to J (Θ) defined in Eq. (14).  
8. //prediction process 

For test sample xt , input the trained PML-ED model and calculate qi according to steps 4–6. For each element of qi, if it is larger than or equal to α, it is a true label; 
otherwise, it is a false label.  

3.5. Discussion of handling noisy labels 

Robust handling of noisy labels is essential in PML scenarios. In the stage of learning credible label distribution (Section 3.2), PML- 
ED integrates a label reconstruction process that identifies and corrects label inconsistencies. Specifically, our proposed method av-
erages the candidate labels for each instance using a similarity method and adopts a KNN label attention mechanism to derive the 
credible label distribution. 

Subsequently, we introduce a noise-adaptive Encoder layer into PML-ED to mitigate the effects of noisy labels. This layer assesses 
the contribution of each label based on its consistency with the label semantics encoded by the Encoder. The low prior assumptions of 
the Transformer make it suitable for handling scenarios with a large number of noisy labels. As a result, PML-ED learns to prioritize 

Fig. 3. Flowchart of the PML-ED method.  
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reliable labels while reducing the influence of outliers or noise. 
In the Decoder layer of PML-ED, we introduce conditional layer normalization and a Transformer Block. Specifically, the layer uses 

maximum pooling to extract significant features from the semantic representation matrix as the overall label representation. The 
Decoder layer then utilizes the conditional layer normalization and the Transformer Block to extract label semantics layer by layer. 
Conditional layer normalization normalizes the label semantic vector output from each Encoder layer, enhancing the correlation 
between the overall label representation and the current label. The Transformer Block, with its multi-head attention mechanism, 
reduces the weight of irrelevant labels while maintaining the weight for the current label representation, which enables the model to 
better focus on label representations related to label features. 

In addition to the above methods for handling noisy labels, the Encoder-Decoder framework inherently possesses a degree of 
robustness to noise, thanks to the label embeddings’ ability to capture semantic relationships between labels. 

4. Experimental results and analysis 

We start this section by outlining the compared PML methods, experimental environment, evaluation criteria, and datasets. We 
then proceed to conduct a comprehensive experimental comparison using the 5 benchmark evaluation criteria and the 28 datasets. 

4.1. Description of compared PML methods and experimental environment 

Nine state-of-the-art PML methods were chosen to compare the classification performance. The compared methods can be divided 
into three categories: (1) PPMs, for example, P-VLS, P-MAP and PAMB; (2) JRMs, such as PML-LCom, PML-LFC, PML-NI and NATAL; 
and (3) Deep learning-based methods, including PML-MT and PML-GAN. The parameters used in the comparison methods are 
consistent with those reported in their respective original papers, which are summarized in Table 1. A 10-fold cross-validation was 
adopted for enhancing the comparative objectivity. The mean and standard deviation of each evaluation criterion is given in the 
experimental results. 

To comprehensively compare PML-ED with other state-of-the-art PML methods, the experimental comparison is divided into two 
parts: a comparison with classic PML methods (Section 4.4.2) and a comparison with DL-based methods (Section 4.4.3). The former 
includes 28 datasets, while the latter encompasses 11 datasets. For the comparison with DL-based methods, the experimental results of 
PML-MT and PML-GAN are sourced from their respective original papers. [40,42]. 

4.2. Description of evaluation criteria 

In this work, five MLC criteria were used to evaluate the PML methods. They are Hamming Loss (HL), Ranking Loss (RL), One Error 
(OE), Coverage (Cove), and Average Precision (AP). f in Eq. (16) is the predicted probability that the test instance belongs to each label 

and the values are sorted in a descending order. rankf

(
xfs

i , l
)

in Eqs. (17)-(19) represents the corresponding rank of label l and | • |

indicates the number of elements in a set. Specifically, Hamming Loss computes the average number of times that labels are mis-
classified, where Δ is the symmetric difference between two sets: 

HL(h) =
1
n

∑m+n

i=m+1

1
Q
|h( xi)Δyi |. (15) 

Ranking Loss computes the average number of times when irrelevant labels are ranked before the relevant labels, where yi is the 
complement of yi in L: 

RL(h) =
1
n

∑m+n

i=m+1

1
|yi||yi|

|{(l, l′) ∈ yi × yi|f ( xi, l) ≤ f ( xi, l′) } |. (16)  

One Error calculates the average number of times that the top-ranked label is irrelevant to the test instance: 

Table 1 
Parameters of compared PML methods.  

PML methods Parameters 

P-VLS Number of nearest neighbor samples k = 10,threshold thr = 0.9, trade-off parameter α = 0.95 
P-MAP Number of nearest neighbor samples k = 10, threshold thr = 0.9, trade-off parameter α = 0.95 
PML-LFC trade-off parameters α = 10,β = 10 
PML-NI trade-off parameters λ = 10,β = 0.5, γ = 0.5 
NATAL trade-off parameters α = 1,β = 10− 6,λ = 0.01 
PML-LCom trade-off parameters λ1 = 5, λ2 = 10, λ3 = 0.1 
PAMB trade-off parameters L = 100log2(q)
PML-MT hyper-parameter λ ∈ {0.001, 0.01, 0.1, 1, 10,100}, m = 32, learning rate = 2e-4 
PML-GAN hyper-parameter β ∈ {0.001, 0.01, 0.1, 1, 10}, m = 64, update steps of discriminator k = 1, the sampling size of label vector n = 210 

PML-ED Number of nearest neighbor samples k = 6, threshold α = 0.5  
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OE(h) =
1
n

∑m+n

i=m+1

⃒
⃒
⃒
⃒

{

l ∕∈ yi|l = argmax
l∈L

rankf ( xi, l)
} ⃒
⃒
⃒
⃒. (17)  

Coverage calculates the average number of steps that are in the ranked list to find all the relevant labels of the test instance: 

Cove(h) =
1
n

∑m+n

i=m+1
max
l∈yi

rankf ( xi, l) − 1. (18)  

Average Precision evaluates the degree for the labels that are prior to the relevant labels and that are still relevant labels: 

AP(h) =
1
n

∑m+n

i=m+1

1
|yi|

∑

l∈yi

|{l′ ∈ yi|f ( xi, l) ≤ f ( xi, l′) } |
rankf ( xi, l)

. (19)  

4.3. Description of experimental datasets 

Twenty-eight benchmark datasets, comprising 22 composite datasets and 6 real-world datasets, were chosen to evaluate the 
performance of the methods. The basic information of these 28 datasets is summarized in Table 2 (for detailed information about these 
benchmark and real-world datasets please visit: https://mulan.sourceforge.net/datasets-mlc.html, http://www.uco.es/kdis/ 
mllresources/ and https://palm.seu.edu.cn/zhangml/). 

For the comparison with classic PML methods (Section 4.4.2), we used 22 composite datasets and 6 real-world datasets. We 
constructed the PML composite datasets by randomly adding noise labels to the MLL datasets. Specifically, for each instance xi in MLL 
datasets [48], some noise labels were randomly introduced into the MLL data. The number of noise labels is a% of the number of labels 
of xi. Owing to a large number of noise labels in real application scenarios, in this work, a was randomly selected from a wide range of 
set {50,100,150,200}, implying that the 22 composite datasets contained more label noises than those of the compared PML methods. 

For the real-world datasets, YeastBP, YeastCC, and YeastMF are obtained from the task of protein–protein interaction prediction 
[44] and Mirflickr, Music_style, and Music_emotion are from the image retrieval task [14]. All of them have false positive labels in the real 
world. Specifically, for YeastBP, YeastCC, and YeastMF, the candidate labels correspond to the biological process annotations of Yeast 
proteins, archived from different periods, in the Gene Ontology (https://www.geneontology.org). Annotations that were available 
historically but are absent in recent periods are considered as false positive labels. For Mirflickr, Music_style, and Music_emotion, the 
candidate labels are collected from web users and further examined by human labelers to specify the ground-truth labels. 

Additionally, as detailed in Table 2, several large-scale datasets were selected for the experiments. 11 of these datasets contain more 

Table 2 
Basic information of PML datasets.  

Datasets Domains Data sources Number 
of instances 

Number 
of Features 

Number 
of Labels 

YeastBP Biology protein 4,257 6,319 217 
YeastCC Biology protein 2,434 6,139 50 
YeastMF Biology protein 2,594 6,139 39 
bibtex Text publication 7,395 1,836 159 
birds Audio birds species 351 260 19 
CAL500 Music music 502 68 174 
CHD_49 Medicine coronary heart disease 552 49 6 
corel5k Image museum 5,000 499 374 
delicious Text web pages 16,091 500 983 
Emotions Music music 593 72 6 
enron Text email corpus 1,702 1,001 53 
Eurlex-dc Text European Union law 19,340 5000 412 
Eurlex-sm Text European Union law 19,338 5000 201 
Flags Image country’s flag 194 19 7 
genbase Biology protein function 661 1,185 27 
GpositivePseAAC Biology proteins 519 440 4 
Image Images nature scene 2,000 294 5 
mediamill Video video indexing 42,177 120 101 
medical Text clinical text reports 978 1,449 45 
scene Image nature scene 2,407 294 6 
Slashdot Text articles 3,782 1,079 22 
Water-quality chemistry water quality 1,054 16 14 
yahoo_Entertainment Text web pages 12,730 32,001 21 
yahoo_Health Text web pages 9,205 30,605 32 
yeast Biology yeast genes 2,417 103 14 
Mirflickr Images image retrieval 10,433 100 7 
Music_style Music music 6,839 98 10 
Music_emotion Music music 6,833 98 11  
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than 5,000 instances, 12 datasets have over 1,000 features, and 8 datasets include more than 100 labels. As outlined in Table 3, we 
compiled a series of PML datasets characterized by a large number of noisy labels, with over 70 % of them exhibiting a noise ratio 
exceeding 30 %. 

For the comparison with DL-based methods (Section 4.4.3), we use 8 composite datasets and 3 real-world datasets. To ensure a fair 
comparison, the composite datasets were constructed following the approach described in [40,42], thereby maintaining consistency 
with the original references in terms of the average number of candidate labels per instance. 

4.4. Analysis of experimental results 

In this section, we first analyze the parameter sensitivity (Section 4.4.1) and comprehensively compare the results of PML-ED with 
the other nine state-of-the-art PML models on 28 datasets (Section 4.4.2 and 4.4.3). We then give the time complexity comparison for 
the studied PML methods (Section 4.4.4). Finally, we perform a discussion of interpretability (Section 4.4.5) and an analysis of 
convergence (Section 4.4.6). 

4.4.1. Analysis of parameter sensitivity 
In order to analyze the sensitivity of the threshold parameter α (see Algorithm 1), the datasets scene, genbase, CAL500, and delicious 

were chosen to test the parameter setting because they represent the different sizes in the true label set, that are 6, 27, 174 and 983 
labels. Fig. 4 shows the classification performance of PML-ED on the four datasets. Specifically, we select the value of α within an 
interval of [0.5, 1] with a step size of 0.1, and test the performance changes of five evaluation criteria. As the value of α changes, PML- 
ED achieves relatively stable performance on HL and Cove on all four datasets. For RL, OE and AP, the algorithm performance slowly 
deteriorates with the increase of α value. Thus, as described in Fig. 3, when α = 0.5, the criteria of HL, RL, OE, and Cove achieve small 
values and AP obtains a large value, implying that 0.5 is a reasonable threshold for α. 

4.4.2. Comparison with classic PML methods 
Generally, as shown in Tables 4-8, PAMB demonstrates poor performance across all five criteria since it obtains the worst average 

rank on RL, OE, Cove, AP and ranks seventh on HL. NATAL achieves the worst average rank on HL and ranks seventh on RL. PML-NI 
obtains the second average rank on the criteria of RL, OE, Cove and AP, but it ranks sixth on HL. Although P-VLS achieves the second 
average rank on HL, the average ranks on RL, OE, Cove, and AP are 6, 4, 7, and 7, respectively. P-MAP, PML-LFC and PML-LCom have a 
non-outstanding performance in the compared methods. Specifically, for PML-LFC, the average ranks on 28 datasets for the criteria of 
HL, RL OE, Cove, and AP are 4.07, 4.18, 4.25, 4.07, and 4.11. On the other hand, our proposed PML-ED model shows obvious ad-
vantages on all five criteria. Its average ranks on 28 datasets for the criteria of HL, RL OE, Cove and AP are 2.36, 2.79, 3.04, 2.82 and 
2.82, respectively, which outperforms other methods across all five criteria. Moreover, there is a clear gap between those methods with 

Table 3 
Description of noise information in PML datasets.  

Datasets Number of true labels Number of candidate labels Number of noisy labels 

YeastBP 33,990 36,375 2385 
YeastCC 8273 8533 260 
YeastMF 6170 6404 234 
bibtex 17,762 28,530 10,768 
birds 1011 1550 539 
CAL500 13,074 19,776 6702 
CHD_49 1432 1878 446 
corel5k 17,610 28,516 10,906 
delicious 306,317 494,020 187,703 
Emotions 1108 1526 418 
enron 5750 9149 3399 
Eurlex-dc 25,003 40,811 15,808 
Eurlex-sm 42,823 68,950 26,127 
Flags 658 843 185 
genbase 828 1275 447 
GpositivePseAAC 523 757 234 
Image 2472 3608 1136 
mediamill 192,118 305,564 113,446 
medical 1218 1908 690 
scene 2585 3874 1289 
Slashdot 7112 11,104 3992 
Water-quality 5377 7301 1924 
yahoo_Entertainment 28,145 42,978 14,833 
yahoo_Health 23,983 37,391 13,408 
yeast 10,241 14,512 4271 
Mirflickr 18,512 34,991 16,479 
Music_style 9851 41,327 31,476 
Music_emotion 16,560 36,159 19,599  
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second average ranks and PML-ED. Specifically, PML-ED achieves the first rank on 12 datasets (YeastBP, CHD_49, delicious, enron, 
Eurlex-dc, Eurlex-sm, mediamill, scene, Water-quality, yahoo-Entertainment, yahoo-Health and yeast) and ranks the second on YeastCC, 
bibtex, CAL500 and Flags for the criterion HL. It has the best results on 7 datasets (YeastCC, YeastMF, enron, Eurlex-dc, Eurlex-sm, yeast 
and Mirflickr) and ranks the second on 8 datasets (YeastBP, bibtex, Flags, genbase, mediamill, scene, yahoo-Entertainment and yahoo- 
Health) for the criterion RL. It obtains the best performance on 8 datasets (YeastBP, delicious, enron, Eurlex-dc, Eurlex-sm, mediamill, 
yahoo-Entertainment and yahoo-Health) and ranks the second on 5 datasets (YeastCC, YeastMF, genbase, scene, and yeast) for the criterion 
OE. For Cove, it ranks the first on 7 datasets (YeastBP, YeastCC, bibtex, Eurlex-dc, Eurlex-sm, yahoo-Entertainment and Mirflickr) and the 
second on 8 datasets (YeastMF, delicious, enron, genbase, mediamill, scene, yahoo-Health and yeast). For AP, it obtains the best results on 
10 datasets (YeastBP, delicious, enron, Eurlex-dc, Eurlex-sm, genbase, mediamill, yahoo-Entertainment, yahoo-Health and yeast) and ranks 
the second on 5 datasets (YeastCC, YeastMF, scene, Water-quality and Mirflickr). It thus can be concluded that the PML-ED presents the 
best performance on datasets covering the domains of text, image, music, biology, video and chemistry. This also implies that the PML-ED 
can be applied to different application scenarios. It should be noted that PAMB cannot be run on CAL500, delicious and Eurlex-dc and 
the corresponding results in Tables 4-8 are marked as NA (Not Available). 

4.4.3. Comparison with DL-based methods 
Table 9 shows the experimental results of PML-ED, PML-MT and PML-GAN on 11 datasets for five criteria. Since PML-GAN cannot 

be evaluated by the Cove criterion and PML-MT cannot be run on yeast and Music_style, corresponding results in Table 9 are marked as 
NA (Not Available). 

To present the results in Table 9 more intuitively, we further introduce a “win/draw/lose” count diagram to compare the per-
formance of DL-based methods, as described in Fig. 5. The basic principle is that if one algorithm is better than others on one dataset for 
a criterion, it is considered as a “win” on this criterion. If it is worse than others, it is considered as a “lose” and otherwise is a “draw”. 

As shown in Fig. 5, compared with PML-GAN and PML-MT, the proposed PML-ED achieves the best results on 7 datasets under the 
HL criterion, 7 under RL, 5 under OE, and 6 under Cove. Additionally, it achieves draw results on 1 dataset under HL, 2 under RL, 2 
under OE, and 5 under Cove. This indicates that PML-ED has superior performance compared to PML-GAN and PML-MT. 

4.4.4. Time complexity comparison 
We give the comparison of time complexity on the nine compared PML methods in Table 10. For PML-ED, kn represents the number 

of convolution kernels and ks presents the size of the convolution kernel. For PML-NI and PML-LFC, F QP(a, b) represents the time 
complexity of QP problem with parameter a and b constraint conditions. F B (m, d) and F ′

B (d) represent the time complexity of 
training and prediction processes on binary classifier B , respectively. 

k in P-VLS, P-MAP and PML-ED is the number of the nearest neighbors. r in NATAL and PML-LCom is the rank of the matrix 
decomposed by the method of singular value decomposition (SVD). In PML-ED, m is the number of samples in the training set, d is the 
number of features, q is the total number of labels, and T is the number of iterations, as described in PML-LCom, PML-MT, PML-GAN 

Fig. 4. Parameter α selection for PML-ED.  
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and PAMB. In addition, l in PAMB is the number of columns of coding matrix, and Ns is the number of support vectors. 
In order to assess real-world performance of ten compared algorithms, we give their running time on all of 28 datasets, as described 

in Table 11. We used an Intel (R) core (TM) i9-13900 K CPU @ 3.00 GHz with 64 GB memory, NVIDIA GeForce GTX 4090 24G GPU, a 
Windows 10 64bit operating system, Python 3.8.10 and matlab R2018a as our experimental environment. It can be seen that the 
running time of PML-ED is shorter than those of PML-LFC, NATAL and PAMB on most of datasets, but longer than those of PML-NI, 
PML-LFC, P-VLS and P-MAP on most of datasets. We have also observed that the proposed PML-ED, as well as NATAL and PAMB, 
runs a long time on some large-scale datasets. Nevertheless, advancements and enhanced applicability in distributed and parallel 
computation (DPC) technologies have significantly accelerated the execution of PML algorithms [12,25]. Speed enhancements of up to 
200 times, as reported in [19], or even 266 times according to [25], are achievable on large-scale datasets compared to traditional 

Table 4 
Results comparison for PML methods on HL criterion.  

Datasets PML-ED P-VLS P-MAP PML-LFC PML-NI NATAL PML-LCom PAMB 

YeastBP 0.036 ± 
0.004(1) 

0.037 ±
0.006(3) 

0.072 ±
0.015(6) 

0.036 ±
0.006(2) 

0.050 ±
0.009(4) 

0.956 ±
0.009(8) 

0.051 ±
0.016(5) 

0.133 ±
0.043(7) 

YeastCC 0.065 ±
0.012(2) 

0.068 ±
0.007(3) 

0.087 ±
0.007(6) 

0.065 ± 
0.008(1) 

0.077 ±
0.007(4) 

0.926 ±
0.005(8) 

0.086 ±
0.014(5) 

0.147 ±
0.016(7) 

YeastMF 0.067 ±
0.010(3) 

0.061 ± 
0.006(1) 

0.143 ±
0.040(6) 

0.062 ±
0.007(2) 

0.079 ±
0.016(4) 

0.936 ±
0.007(8) 

0.086 ±
0.022(5) 

0.157 ±
0.038(7) 

bibtex 0.014 ±
0.000(2) 

0.016 ±
0.000(5) 

0.023 ±
0.001(6) 

0.015 ±
0.000(3) 

0.015 ±
0.001(4) 

0.775 ±
0.015(8) 

0.013 ± 
0.000(1) 

0.024 ±
0.002(7) 

birds 0.168 ±
0.016(5) 

0.137 ± 
0.017(1) 

0.199 ±
0.018(7) 

0.152 ±
0.020(2) 

0.170 ±
0.020(6) 

0.686 ±
0.031(8) 

0.162 ±
0.019(4) 

0.153 ±
0.023(3) 

CAL500 0.142 ±
0.005(2) 

0.150 ±
0.006(4) 

0.145 ±
0.006(3) 

0.150 ±
0.006(4) 

0.593 ±
0.319(7) 

0.515 ±
0.032(6) 

0.140 ± 
0.007(1) 

NA(8) 

CHD_49 0.315 ± 
0.027(1) 

0.343 ±
0.018(5) 

0.342 ±
0.030(4) 

0.433 ±
0.041(7) 

0.376 ±
0.038(6) 

0.470 ±
0.035(8) 

0.335 ±
0.042(3) 

0.320 ±
0.027(2) 

corel5k 0.011 ±
0.000(4) 

0.009 ± 
0.000(1) 

0.013 ±
0.001(6) 

0.009 ± 
0.000(1) 

0.012 ±
0.000(5) 

0.907 ±
0.034(8) 

0.010 ±
0.000(3) 

0.014 ±
0.001(7) 

delicious 0.018 ± 
0.000(1) 

0.019 ±
0.000(3) 

0.019 ±
0.000(3) 

0.019 ±
0.000(3) 

0.591 ±
0.425(6) 

0.744 ±
0.013(7) 

0.018 ± 
0.000(1) 

NA(8) 

Emotions 0.282 ±
0.041(5) 

0.219 ±
0.032(3) 

0.213 ± 
0.024(1) 

0.311 ±
0.027(7) 

0.247 ±
0.020(4) 

0.288 ±
0.016(6) 

0.311 ±
0.028(8) 

0.213 ±
0.028(2) 

enron 0.054 ± 
0.011(1) 

0.064 ±
0.010(3) 

0.058 ±
0.012(2) 

0.064 ±
0.011(4) 

0.087 ±
0.020(7) 

0.855 ±
0.100(8) 

0.066 ±
0.014(5) 

0.071 ±
0.009(6) 

Eurlex-dc 0.001 ± 
0.000(1) 

0.003 ±
0.000(2) 

0.005 ±
0.000(5) 

0.003 ±
0.000(2) 

0.011 ±
0.002(6) 

0.978 ±
0.003(7) 

0.003 ±
0.000(2) 

NA(8) 

Eurlex-sm 0.005 ± 
0.000(1) 

0.011 ±
0.000(4) 

0.012 ±
0.000(7) 

0.011 ±
0.000(4) 

0.011 ±
0.001(6) 

0.962 ±
0.004(8) 

0.010 ±
0.000(3) 

0.009 ±
0.000 (2) 

Flags 0.311 ±
0.026(2) 

0.317 ±
0.041(3) 

0.387 ±
0.031(4) 

0.486 ±
0.022(8) 

0.304 ± 
0.044(1) 

0.449 ±
0.043(6) 

0.486 ±
0.021(7) 

0.399 ±
0.034(5) 

genbase 0.003 ±
0.003(3) 

0.046 ±
0.005(7) 

0.126 ±
0.079(6) 

0.018 ±
0.009(5) 

0.001 ± 
0.001(1) 

0.729 ±
0.128(8) 

0.003 ±
0.002(2) 

0.010 ±
0.006(4) 

GpositivePseAAC 0.175 ±
0.077(3) 

0.162 ± 
0.067(1) 

0.305 ±
0.158(6) 

0.170 ±
0.059(2) 

0.215 ±
0.056(4) 

0.639 ±
0.042(8) 

0.266 ±
0.140(5) 

0.399 ±
0.124(7) 

Image 0.247 ±
0.051(3) 

0.207 ± 
0.052(1) 

0.304 ±
0.123(6) 

0.243 ±
0.029(2) 

0.260 ±
0.056(4) 

0.461 ±
0.043(8) 

0.325 ±
0.061(7) 

0.265 ±
0.059(5) 

mediamill 0.030 ± 
0.002(1) 

0.045 ±
0.002(6) 

0.035 ±
0.002(3) 

0.045 ±
0.002(6) 

0.044 ±
0.005(5) 

0.426 ±
0.063(8) 

0.033 ±
0.001(2) 

0.038 ±
0.002(4) 

medical 0.013 ±
0.002(3) 

0.020 ±
0.002(4) 

0.034 ±
0.004(6) 

0.021 ±
0.002(5) 

0.011 ±
0.002(2) 

0.948 ±
0.014(8) 

0.010 ± 
0.002(1) 

0.036 ±
0.004(7) 

scene 0.120 ± 
0.049(1) 

0.121 ±
0.032(2) 

0.181 ±
0.074(4) 

0.158 ±
0.022(3) 

0.231 ±
0.058(5) 

0.417 ±
0.071(8) 

0.236 ±
0.037(6) 

0.355 ±
0.079(7) 

Slashdot 0.088 ±
0.007(3) 

0.109 ±
0.007(5) 

0.115 ±
0.007(6) 

0.083 ±
0.004(2) 

0.089 ±
0.005(4) 

0.869 ±
0.009(8) 

0.073 ± 
0.006(1) 

0.122 ±
0.014(9) 

Water-quality 0.324 ± 
0.031(1) 

0.355 ±
0.039(4) 

0.325 ±
0.032(2) 

0.365 ±
0.047(5) 

0.514 ±
0.102(8) 

0.386 ±
0.020(7) 

0.380 ±
0.034(6) 

0.346 ±
0.037(3) 

yahoo_Entertainment 0.080 ± 
0.003(1) 

0.105 ±
0.002(4) 

0.156 ±
0.108(7) 

0.101 ±
0.002(3) 

0.117 ±
0.003(5) 

0.893 ±
0.002(8) 

0.095 ±
0.004(2) 

0.117 ±
0.003(5) 

yahoo_Health 0.058 ± 
0.002(1) 

0.081 ±
0.002(6) 

0.080 ±
0.002(5) 

0.079 ±
0.002(3) 

0.085 ±
0.003(7) 

0.918 ±
0.002(8) 

0.069 ±
0.002(2) 

0.079 ±
0.002(3) 

yeast 0.201 ± 
0.007(1) 

0.213 ±
0.005(3) 

0.232 ±
0.005(5) 

0.303 ±
0.007(7) 

0.208 ±
0.008(2) 

0.413 ±
0.010(8) 

0.221 ±
0.011(4) 

0.271 ±
0.009(6) 

Mirflickr 0.194 ±
0.040(3) 

0.175 ±
0.034(2) 

0.197 ±
0.072(4) 

0.257 ±
0.063(7) 

0.233 ±
0.067(6) 

0.357 ±
0.074(8) 

0.224 ±
0.059(5) 

0.164 ± 
0.029(1) 

Music_style 0.184 ±
0.005(6) 

0.119 ± 
0.004(1) 

0.119 ± 
0.004(1) 

0.197 ±
0.004(7) 

0.160 ±
0.013(4) 

0.423 ±
0.007(8) 

0.169 ±
0.019(5) 

0.123 ±
0.005(3) 

Music_emotion 0.241 ±
0.007(5) 

0.203 ± 
0.005(1) 

0.229 ±
0.005(3) 

0.260 ±
0.007(7) 

0.254 ±
0.010(6) 

0.387 ±
0.006(8) 

0.238 ±
0.018(4) 

0.206 ±
0.004(2)  
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sequential CPU execution. For example, for the large-scale dataset Eurlex-sm, adopting the DPC technology in [12] (speedup to 200 
times) will reduce its real running time to about 0.79 minute. Thus, the DPC technologies can mitigate the situation of high time 
complexity through enhancing the computation efficiency of PML-ED. 

4.4.5. Interpretability discussion of PML-ED model 
In existing research, neural network interpretability [47] primarily focuses on visual expression, often in the form of heat maps for 

image data. In this work, we use changes in evaluation criteria caused by feature masking as the interpretable indicator for the PML-ED 
model. Inspired by the concept of gradients reflecting feature importance in Grad CAM [24], we explain the effectiveness of the 
Encoder-Decoder framework in feature extraction and expression, using both original sample features and label semantic features. We 

Table 5 
Results comparison for PML methods on RL criterion.  

Datasets PML-ED P-VLS P-MAP PML-LFC PML-NI NATAL PML-LCom PAMB 

YeastBP 0.162 ±
0.044(2) 

0.000 ± 
0.000(1) 

0.345 ±
0.032(7) 

0.222 ±
0.037(4) 

0.233 ±
0.039(5) 

0.213 ±
0.046(3) 

0.265 ±
0.035(6) 

0.585 ±
0.028(8) 

YeastCC 0.149 ± 
0.069(1) 

0.831 ±
0.047(8) 

0.334 ±
0.076(6) 

0.193 ±
0.048(3) 

0.211 ±
0.050(4) 

0.160 ±
0.057(2) 

0.235 ±
0.045(5) 

0.577 ±
0.045(7) 

YeastMF 0.233 ± 
0.063(1) 

0.820 ±
0.090(8) 

0.351 ±
0.046(6) 

0.240 ±
0.013(3) 

0.262 ±
0.014(4) 

0.237 ±
0.019(2) 

0.273 ±
0.020(5) 

0.543 ±
0.038(7) 

bibtex 0.080 ±
0.007(2) 

0.328 ±
0.011(7) 

0.326 ±
0.011(6) 

0.077 ± 
0.006(1) 

0.113 ±
0.007(3) 

0.123 ±
0.008(4) 

0.129 ±
0.009(5) 

0.495 ±
0.008(8) 

birds 0.353 ±
0.021(6) 

0.317 ±
0.032(5) 

0.311 ±
0.028(4) 

0.362 ±
0.047(7) 

0.261 ± 
0.036(1) 

0.268 ±
0.039(2) 

0.363 ±
0.040(8) 

0.299 ±
0.045(3) 

CAL500 0.187 ±
0.008(4) 

0.414 ±
0.018(6) 

0.177 ± 
0.007(1) 

0.186 ±
0.006(3) 

0.207 ±
0.017(5) 

0.445 ±
0.036(7) 

0.183 ±
0.006(2) 

NA(8) 

CHD_49 0.228 ±
0.039(3) 

0.269 ±
0.057(7) 

0.221 ± 
0.060(1) 

0.239 ±
0.044(5) 

0.229 ±
0.034(4) 

0.449 ±
0.080(8) 

0.223 ±
0.034(2) 

0.251 ±
0.042(6) 

corel5k 0.229 ±
0.051(3) 

0.370 ±
0.078(7) 

0.126 ± 
0.024(1) 

0.195 ±
0.038(2) 

0.280 ±
0.029(5) 

0.337 ±
0.040(6) 

0.255 ±
0.044(4) 

0.425 ±
0.035(8) 

delicious 0.129 ±
0.006(4) 

0.348 ±
0.003(7) 

0.173 ±
0.002(5) 

0.108 ± 
0.002(1) 

0.127 ±
0.002(3) 

0.307 ±
0.004(6) 

0.121 ±
0.002(2) 

NA(8) 

Emotions 0.279 ±
0.077(6) 

0.187 ±
0.029(4) 

0.176 ±
0.028(3) 

0.386 ±
0.038(8) 

0.173 ±
0.023(2) 

0.190 ±
0.029(5) 

0.305 ±
0.053(7) 

0.157 ± 
0.031(1) 

enron 0.102 ± 
0.022(1) 

0.230 ±
0.061(6) 

0.109 ±
0.026(3) 

0.105 ±
0.024(2) 

0.206 ±
0.042(5) 

0.573 ±
0.318(8) 

0.158 ±
0.031(4) 

0.312 ±
0.078(7) 

Eurlex-dc 0.014 ± 
0.001(1) 

0.120 ±
0.006(6) 

0.089 ±
0.005(5) 

0.023 ±
0.003(2) 

0.026 ±
0.001(3) 

0.172 ±
0.011(7) 

0.068 ±
0.003(4) 

NA(8) 

Eurlex-sm 0.012 ± 
0.001(1) 

0.096 ±
0.001(7) 

0.074 ±
0.002(5) 

0.023 ±
0.002(2) 

0.026 ±
0.002(3) 

0.193 ±
0.012(8) 

0.038 ±
0.004(4) 

0.075 ±
0.002(6) 

Flags 0.237 ±
0.057(2) 

0.260 ±
0.065(6) 

0.215 ± 
0.053(1) 

0.246 ±
0.048(5) 

0.243 ±
0.063(3) 

0.398 ±
0.051(8) 

0.245 ±
0.051(4) 

0.338 ±
0.071(7) 

genbase 0.002 ±
0.002(2) 

0.000 ± 
0.000(1) 

0.133 ±
0.046(8) 

0.011 ±
0.009(6) 

0.005 ±
0.008(4) 

0.002 ±
0.003(2) 

0.007 ±
0.008(5) 

0.011 ±
0.009(6) 

GpositivePseAAC 0.181 ±
0.087(3) 

0.159 ± 
0.087(1) 

0.266 ±
0.156(6) 

0.180 ±
0.093(2) 

0.239 ±
0.094(5) 

0.199 ±
0.103(4) 

0.311 ±
0.212(7) 

0.442 ±
0.162(8) 

Image 0.242 ±
0.059(3) 

0.222 ± 
0.057(1) 

0.368 ±
0.146(7) 

0.323 ±
0.125(5) 

0.277 ±
0.094(4) 

0.233 ±
0.064(2) 

0.505 ±
0.198(8) 

0.338 ±
0.115(6) 

mediamill 0.053 ±
0.005(2) 

0.100 ±
0.006(6) 

0.057 ±
0.004(3) 

0.058 ±
0.004(4) 

0.053 ± 
0.004(1) 

0.249 ±
0.019(8) 

0.062 ±
0.005(5) 

0.215 ±
0.008(7) 

medical 0.028 ±
0.009(4) 

0.124 ±
0.029(7) 

0.092 ±
0.016(6) 

0.028 ±
0.010(5) 

0.020 ± 
0.010(1) 

0.022 ±
0.009(2) 

0.023 ±
0.010(3) 

0.405 ±
0.052(8) 

scene 0.113 ±
0.049(2) 

0.110 ± 
0.040(1) 

0.233 ±
0.070(6) 

0.158 ±
0.064(4) 

0.176 ±
0.061(5) 

0.130 ±
0.038(3) 

0.505 ±
0.154(7) 

0.781 ±
0.089(8) 

Slashdot 0.249 ±
0.020(5) 

0.401 ±
0.013(8) 

0.333 ±
0.017(7) 

0.214 ± 
0.012(1) 

0.248 ±
0.016(4) 

0.231 ±
0.010(2) 

0.236 ±
0.019(3) 

0.319 ±
0.019(6) 

Water-quality 0.297 ±
0.040(3) 

0.338 ±
0.028(7) 

0.294 ± 
0.030(1) 

0.309 ±
0.031(4) 

0.297 ±
0.032(2) 

0.362 ±
0.056(8) 

0.311 ±
0.040(5) 

0.325 ±
0.043(6) 

yahoo_Entertainment 0.194 ±
0.009(2) 

0.000 ± 
0.000(1) 

0.245 ±
0.007(6) 

0.197 ±
0.007(3) 

0.230 ±
0.007(5) 

0.423 ±
0.017(8) 

0.199 ±
0.008(4) 

0.295 ±
0.021(7) 

yahoo_Health 0.173 ±
0.006(2) 

0.000 ± 
0.000(1) 

0.191 ±
0.007(5) 

0.179 ±
0.009(4) 

0.205 ±
0.009(6) 

0.428 ±
0.013(7) 

0.177 ±
0.009(3) 

0.438 ±
0.011(8) 

yeast 0.171 ± 
0.012(1) 

0.192 ±
0.010(5) 

0.184 ±
0.009(4) 

0.313 ±
0.014(7) 

0.181 ±
0.013(3) 

0.342 ±
0.016(8) 

0.176 ±
0.012(2) 

0.220 ±
0.015(6) 

Mirflickr 0.115 ± 
0.038(1) 

0.213 ±
0.035(6) 

0.132 ±
0.111(4) 

0.357 ±
0.122(8) 

0.129 ±
0.038(3) 

0.240 ±
0.115(7) 

0.126 ±
0.044(2) 

0.136 ±
0.042(5) 

Music_style 0.256 ±
0.010(5) 

0.165 ±
0.005(4) 

0.144 ±
0.006(2) 

0.488 ±
0.106(8) 

0.137 ± 
0.007(1) 

0.302 ±
0.010(6) 

0.414 ±
0.190(7) 

0.152 ±
0.010(3) 

Music_emotion 0.368 ±
0.013(6) 

0.268 ±
0.010(4) 

0.264 ±
0.011(3) 

0.472 ±
0.035(8) 

0.244 ±
0.009(2) 

0.274 ±
0.007(5) 

0.463 ±
0.110(7) 

0.233 ± 
0.009(1)  
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have conducted above mask-based interpretability experiments on both a benchmark dataset (yeast) and a real-world application 
dataset (Mirflickr). 

For the original sample features, we calculate the gradient of each feature in the network for each instance. We posit that features 
with larger gradient values significantly contribute to network decision-making. Masking these features should cause notable changes 
in evaluation indicators. Specifically, for the yeast dataset, each prediction input’s size is X * 103, where X represents the number of 
samples and 103 represents the number of features. During the prediction process, we calculate the corresponding gradient in the 
network, which is also a X * 103 matrix. Each row is a 1 * 103 gradient vector, reflecting the importance of different features in the 
sample. For several sample features with higher gradient values, we use random values to replace them, thereby achieving the goal of 
masking features. We also construct a comparison group that randomly masks the same number of features. By comparing the changes 

Table 6 
Results comparison for PML methods on OE criterion.  

Datasets PML-ED P-VLS P-MAP PML-LFC PML-NI NATAL PML-LCom PAMB 

YeastBP 0.550 ± 
0.139(1) 

1.000 ±
0.000(8) 

0.903 ±
0.062(6) 

0.601 ±
0.114(4) 

0.598 ±
0.081(3) 

0.573 ±
0.130(2) 

0.660 ±
0.091(5) 

0.951 ±
0.021(7) 

YeastCC 0.474 ±
0.151(2) 

0.864 ±
0.033(6) 

0.946 ±
0.068(8) 

0.499 ±
0.114(3) 

0.515 ±
0.108(4) 

0.455 ± 
0.113(1) 

0.565 ±
0.085(5) 

0.939 ±
0.026(7) 

YeastMF 0.658 ±
0.111(2) 

0.875 ±
0.032(6) 

0.903 ±
0.047(7) 

0.698 ±
0.038(4) 

0.691 ±
0.047(3) 

0.641 ± 
0.049(1) 

0.700 ±
0.036(5) 

0.949 ±
0.024(8) 

bibtex 0.401 ±
0.017(3) 

0.583 ±
0.010(6) 

0.772 ±
0.011(7) 

0.367 ± 
0.015(1) 

0.371 ±
0.016(2) 

0.454 ±
0.017(5) 

0.446 ±
0.017(4) 

0.919 ±
0.014(8) 

birds 0.649 ±
0.075(6) 

0.383 ± 
0.100(1) 

0.574 ±
0.126(5) 

0.669 ±
0.080(8) 

0.437 ±
0.062(3) 

0.409 ±
0.082(2) 

0.649 ±
0.081(7) 

0.474 ±
0.074(4) 

CAL500 0.116 ±
0.028(4) 

0.446 ±
0.100(6) 

0.116 ± 
0.026(1) 

0.116 ± 
0.026(1) 

0.154 ±
0.051(5) 

0.578 ±
0.075(7) 

0.116 ± 
0.026(1) 

NA(8) 

CHD_49 0.265 ±
0.078(4) 

0.220 ± 
0.064(1) 

0.235 ±
0.120(2) 

0.371 ±
0.109(7) 

0.291 ±
0.079(5) 

0.559 ±
0.099(8) 

0.329 ±
0.101(6) 

0.238 ±
0.122(3) 

corel5k 0.765 ±
0.055(4) 

0.821 ±
0.069(7) 

0.862 ±
0.059(8) 

0.714 ±
0.045(1) 

0.741 ±
0.042(3) 

0.777 ±
0.067(5) 

0.735 ±
0.043(2) 

0.778 ±
0.067(6) 

delicious 0.333 ± 
0.012(1) 

0.515 ±
0.019(7) 

0.448 ±
0.022(6) 

0.343 ±
0.012(4) 

0.340 ±
0.015(2) 

0.439 ±
0.010(5) 

0.341 ±
0.014(3) 

NA(8) 

Emotions 0.436 ±
0.081(6) 

0.197 ± 
0.042(1) 

0.242 ±
0.045(3) 

0.579 ±
0.077(8) 

0.285 ±
0.046(4) 

0.367 ±
0.051(5) 

0.519 ±
0.059(7) 

0.237 ±
0.071(2) 

enron 0.273 ± 
0.064(1) 

0.567 ±
0.147(6) 

0.325 ±
0.067(3) 

0.301 ±
0.062(2) 

0.411 ±
0.037(5) 

0.678 ±
0.338(7) 

0.336 ±
0.041(4) 

0.682 ±
0.146(8) 

Eurlex-dc 0.166 ± 
0.005(1) 

0.696 ±
0.009(7) 

0.640 ±
0.007(6) 

0.289 ±
0.008(2) 

0.366 ±
0.008(3) 

0.514 ±
0.011(5) 

0.407 ±
0.017(4) 

NA(8) 

Eurlex-sm 0.095 ± 
0.005(1) 

0.565 ±
0.016(8) 

0.490 ±
0.015(7) 

0.159 ±
0.004(2) 

0.290 ±
0.008(4) 

0.378 ±
0.013(6) 

0.234 ±
0.047(3) 

0.313 ±
0.010(5) 

Flags 0.247 ±
0.100(5) 

0.197 ± 
0.088(1) 

0.218 ±
0.090(2) 

0.223 ±
0.095(3) 

0.240 ±
0.101(4) 

0.368 ±
0.127(8) 

0.276 ±
0.120(6) 

0.287 ±
0.098(7) 

genbase 0.001 ±
0.002(2) 

1.000 ±
0.000(8) 

0.685 ±
0.193(7) 

0.012 ±
0.016(5) 

0.003 ±
0.006(3) 

0.000 ± 
0.000(1) 

0.003 ±
0.006(3) 

0.027 ±
0.018(6) 

GpositivePseAAC 0.345 ±
0.158(4) 

0.272 ± 
0.150(1) 

0.481 ±
0.318(6) 

0.318 ±
0.160(3) 

0.407 ±
0.144(5) 

0.318 ±
0.131(2) 

0.555 ±
0.384(7) 

0.869 ±
0.232(8) 

Image 0.487 ±
0.132(3) 

0.345 ± 
0.085(1) 

0.560 ±
0.233(6) 

0.591 ±
0.205(7) 

0.519 ±
0.141(5) 

0.466 ±
0.140(2) 

0.787 ±
0.218(8) 

0.502 ±
0.129(4) 

mediamill 0.112 ± 
0.009(1) 

0.630 ±
0.052(8) 

0.129 ±
0.011(3) 

0.168 ±
0.015(5) 

0.124 ±
0.008(2) 

0.331 ±
0.028(7) 

0.154 ±
0.011(4) 

0.178 ±
0.013(6) 

medical 0.176 ±
0.051(4) 

0.247 ±
0.040(6) 

0.492 ±
0.065(7) 

0.168 ±
0.055(3) 

0.137 ± 
0.044(1) 

0.239 ±
0.062(5) 

0.141 ±
0.056(2) 

0.683 ±
0.082(8) 

scene 0.324 ±
0.145(2) 

0.258 ± 
0.095(1) 

0.408 ±
0.138(4) 

0.440 ±
0.169(5) 

0.445 ±
0.143(6) 

0.379 ±
0.119(3) 

0.855 ±
0.177(7) 

0.879 ±
0.052(8) 

Slashdot 0.529 ±
0.067(5) 

0.771 ±
0.049(7) 

0.820 ±
0.052(8) 

0.383 ±
0.055(2) 

0.432 ±
0.051(4) 

0.383 ± 
0.038(1) 

0.419 ±
0.049(3) 

0.738 ±
0.044(6) 

Water-quality 0.349 ±
0.163(4) 

0.326 ± 
0.171(1) 

0.330 ±
0.151(2) 

0.357 ±
0.166(5) 

0.335 ±
0.158(3) 

0.402 ±
0.122(7) 

0.372 ±
0.149(6) 

0.409 ±
0.142(8) 

yahoo_Entertainment 0.272 ± 
0.016(1) 

1.000 ±
0.000(8) 

0.681 ±
0.016(7) 

0.327 ±
0.016(2) 

0.428 ±
0.022(4) 

0.529 ±
0.028(5) 

0.334 ±
0.016(3) 

0.586 ±
0.024(6) 

yahoo_Health 0.185 ± 
0.017(1) 

1.000 ±
0.000(8) 

0.474 ±
0.015(6) 

0.270 ±
0.013(3) 

0.342 ±
0.014(4) 

0.503 ±
0.016(7) 

0.261 ±
0.018(2) 

0.467 ±
0.016(5) 

yeast 0.234 ±
0.022(2) 

0.219 ± 
0.024(1) 

0.250 ±
0.025(5) 

0.254 ±
0.028(6) 

0.240 ±
0.024(3) 

0.394 ±
0.040(8) 

0.242 ±
0.023(4) 

0.323 ±
0.041(7) 

Mirflickr 0.287 ±
0.092(4) 

0.147 ± 
0.127(1) 

0.207 ±
0.235(2) 

0.521 ±
0.075(7) 

0.306 ±
0.102(5) 

0.528 ±
0.137(8) 

0.274 ±
0.113(3) 

0.357 ±
0.079(6) 

Music_style 0.406 ±
0.016(5) 

0.350 ±
0.021(2) 

0.366 ±
0.021(3) 

0.898 ±
0.034(8) 

0.344 ± 
0.016(1) 

0.578 ±
0.022(6) 

0.602 ±
0.245(7) 

0.367 ±
0.019(4) 

Music_emotion 0.593 ±
0.026(6) 

0.363 ± 
0.028(1) 

0.515 ±
0.027(5) 

0.764 ±
0.053(8) 

0.476 ±
0.025(3) 

0.497 ±
0.023(4) 

0.705 ±
0.137(7) 

0.402 ±
0.025(2)  
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in evaluation indicators caused by both types of masks, we validate the effectiveness of the feature encoder in feature extraction. For 
the dataset Mirflickr, We also construct a comparison group that randomly masks the same number of features. By comparing the 
changes in evaluation indicators caused by both types of masks, we validate the effectiveness of the feature encoder in feature 
extraction. Table 12 shows the impact of two methods of original sample feature masking on the datasets yeast and Mirflickr. 

For the semantic features of labels extracted by the Encoder, we obtain their gradient information in the network and use the global 
average gradient to reflect the weight of each label vector. Specifically, for the yeast dataset, prediction data with dimensions of X * 103 
is encoded into label semantic feature vectors of dimensions X * 14 * 128, where X represents the number of samples, 14 is the number 
of labels, and 128 is the size of each label semantic feature vector. Similarly, obtaining its gradient information in the network results in 
a matrix of X * 14 * 128. We calculate the global average gradient to represent the weight of each feature vector in the network (i.e., by 

Table 7 
Results comparison for PML methods on Cove criterion.  

Datasets PML-ED P-VLS P-MAP PML-LFC PML-NI NATAL PML-LCom PAMB 

YeastBP 0.332 ± 
0.035(1) 

0.825 ±
0.035(7) 

0.546 ±
0.064(6) 

0.432 ±
0.010(3) 

0.447 ±
0.026(4) 

0.376 ±
0.040(2) 

0.472 ±
0.013(5) 

0.838 ±
0.016(8) 

YeastCC 0.244 ± 
0.082(1) 

0.672 ±
0.043(7) 

0.434 ±
0.100(6) 

0.307 ±
0.044(3) 

0.323 ±
0.050(4) 

0.246 ±
0.064(2) 

0.341 ±
0.041(5) 

0.723 ±
0.033(8) 

YeastMF 0.309 ±
0.079(2) 

0.547 ±
0.067(7) 

0.413 ±
0.056(6) 

0.312 ±
0.023(3) 

0.336 ±
0.019(5) 

0.304 ± 
0.023(1) 

0.335 ±
0.027(4) 

0.612 ±
0.038(8) 

bibtex 0.148 ± 
0.010(1) 

0.486 ±
0.014(7) 

0.476 ±
0.012(6) 

0.152 ±
0.011(2) 

0.211 ±
0.012(4) 

0.177 ±
0.009(3) 

0.217 ±
0.011(5) 

0.620 ±
0.009(8) 

birds 0.564 ±
0.042(7) 

0.526 ±
0.047(5) 

0.511 ±
0.054(3) 

0.563 ±
0.055(6) 

0.484 ± 
0.057(1) 

0.484 ±
0.062(2) 

0.565 ±
0.051(8) 

0.515 ±
0.073(4) 

CAL500 0.777 ±
0.023(3) 

0.954 ±
0.008(6) 

0.727 ±
0.015(1) 

0.795 ±
0.021(4) 

0.829 ±
0.022(5) 

0.956 ±
0.010(7) 

0.762 ±
0.016(2) 

NA(8) 

CHD_49 0.472 ±
0.035(4) 

0.483 ±
0.027(6) 

0.474 ±
0.038(5) 

0.461 ± 
0.035(1) 

0.468 ±
0.042(3) 

0.603 ±
0.058(8) 

0.463 ±
0.033(2) 

0.497 ±
0.044(7) 

corel5k 0.484 ±
0.084(3) 

0.594 ±
0.050(6) 

0.237 ± 
0.042(1) 

0.426 ±
0.063(2) 

0.579 ±
0.047(5) 

0.650 ±
0.056(7) 

0.528 ±
0.063(4) 

0.715 ±
0.033(8) 

delicious 0.593 ±
0.017(2) 

0.848 ±
0.003(7) 

0.686 ±
0.006(5) 

0.548 ± 
0.008(1) 

0.640 ±
0.007(4) 

0.818 ±
0.005(6) 

0.616 ±
0.005(3) 

NA(8) 

Emotions 0.395 ±
0.084(6) 

0.319 ±
0.041(4) 

0.320 ±
0.037(5) 

0.499 ±
0.047(8) 

0.311 ±
0.034(2) 

0.312 ±
0.029(3) 

0.414 ±
0.053(7) 

0.298 ± 
0.034(1) 

enron 0.289 ±
0.060(2) 

0.420 ±
0.112(5) 

0.277 ± 
0.065(1) 

0.298 ±
0.066(3) 

0.459 ±
0.094(6) 

0.764 ±
0.194(8) 

0.398 ±
0.082(4) 

0.599 ±
0.148(7) 

Eurlex-dc 0.020 ± 
0.002(1) 

0.146 ±
0.006(6) 

0.112 ±
0.005(5) 

0.032 ±
0.003(2) 

0.036 ±
0.002(3) 

0.181 ±
0.011(7) 

0.084 ±
0.004(4) 

NA(8) 

Eurlex-sm 0.032 ± 
0.003(1) 

0.173 ±
0.002(7) 

0.135 ±
0.002(5) 

0.054 ±
0.003(2) 

0.058 ±
0.003(3) 

0.256 ±
0.012(8) 

0.078 ±
0.007(4) 

0.159 ±
0.004(6) 

Flags 0.572 ±
0.035(5) 

0.562 ±
0.056(2) 

0.535 ± 
0.041(1) 

0.572 ±
0.040(6) 

0.563 ±
0.054(3) 

0.685 ±
0.038(8) 

0.566 ±
0.046(4) 

0.641 ±
0.044(7) 

genbase 0.016 ±
0.018(2) 

0.780 ±
0.028(8) 

0.134 ±
0.050(7) 

0.029 ±
0.020(6) 

0.018 ±
0.018(3) 

0.012 ± 
0.009(1) 

0.023 ±
0.017(4) 

0.027 ±
0.018(5) 

GpositivePseAAC 0.138 ±
0.064(3) 

0.115 ± 
0.067(1) 

0.201 ±
0.115(6) 

0.137 ±
0.070(2) 

0.182 ±
0.069(5) 

0.151 ±
0.077(4) 

0.235 ±
0.158(7) 

0.333 ±
0.120(8) 

Image 0.247 ±
0.050(3) 

0.220 ± 
0.075(1) 

0.349 ±
0.131(7) 

0.309 ±
0.102(5) 

0.273 ±
0.083(4) 

0.241 ±
0.061(2) 

0.454 ±
0.155(8) 

0.323 ±
0.093(6) 

mediamill 0.194 ±
0.015(2) 

0.265 ±
0.015(6) 

0.205 ±
0.016(4) 

0.199 ±
0.013(3) 

0.189 ± 
0.011(1) 

0.536 ±
0.018(8) 

0.210 ±
0.014(5) 

0.513 ±
0.018(7) 

medical 0.043 ±
0.013(4) 

0.122 ±
0.024(7) 

0.114 ±
0.019(6) 

0.044 ±
0.013(5) 

0.034 ±
0.014(2) 

0.033 ± 
0.011(1) 

0.040 ±
0.014(3) 

0.425 ±
0.056(8) 

scene 0.109 ±
0.043(2) 

0.100 ± 
0.040(1) 

0.211 ±
0.058(6) 

0.146 ±
0.054(4) 

0.162 ±
0.051(5) 

0.124 ±
0.032(3) 

0.436 ±
0.132(7) 

0.670 ±
0.079(8) 

Slashdot 0.382 ±
0.024(4) 

0.480 ±
0.018(8) 

0.440 ±
0.025(7) 

0.355 ± 
0.018(1) 

0.384 ±
0.021(5) 

0.368 ±
0.019(2) 

0.374 ±
0.027(3) 

0.435 ±
0.022(6) 

Water-quality 0.665 ±
0.055(3) 

0.691 ±
0.053(7) 

0.662 ± 
0.048(1) 

0.674 ±
0.055(4) 

0.665 ±
0.053(2) 

0.718 ±
0.045(8) 

0.676 ±
0.060(6) 

0.674 ±
0.060(5) 

yahoo_Entertainment 0.361 ± 
0.011(1) 

0.771 ±
0.006(8) 

0.386 ±
0.009(4) 

0.362 ±
0.010(2) 

0.388 ±
0.011(5) 

0.564 ±
0.017(7) 

0.364 ±
0.011(3) 

0.442 ±
0.021(6) 

yahoo_Health 0.377 ±
0.013(2) 

0.885 ±
0.003(8) 

0.373 ± 
0.014(1) 

0.382 ±
0.017(4) 

0.405 ±
0.015(5) 

0.616 ±
0.011(6) 

0.381 ±
0.018(3) 

0.641 ±
0.011(7) 

yeast 0.465 ±
0.017(2) 

0.483 ±
0.016(5) 

0.475 ±
0.012(3) 

0.749 ±
0.020(8) 

0.478 ±
0.017(4) 

0.624 ±
0.017(7) 

0.458 ± 
0.017(1) 

0.516 ±
0.020(6) 

Mirflickr 0.221 ± 
0.071(1) 

0.273 ±
0.072(6) 

0.243 ±
0.059(5) 

0.457 ±
0.182(8) 

0.234 ±
0.060(3) 

0.317 ±
0.144(7) 

0.234 ±
0.046(2) 

0.237 ±
0.086(4) 

Music_style 0.318 ±
0.009(5) 

0.205 ±
0.007(3) 

0.201 ±
0.008(2) 

0.519 ±
0.093(8) 

0.198 ± 
0.009(1) 

0.352 ±
0.009(6) 

0.461 ±
0.172(7) 

0.213 ±
0.010(4) 

Music_emotion 0.511 ±
0.010(6) 

0.411 ±
0.010(3) 

0.425 ±
0.011(4) 

0.621 ±
0.027(8) 

0.407 ±
0.011(2) 

0.434 ±
0.011(5) 

0.597 ±
0.095(7) 

0.403 ± 
0.011(1)  
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taking the mean of the third dimension, size 128), thus obtaining a weight matrix of dimensions X * 14. This matrix reflects the 
importance of the 14 label semantic feature vectors extracted by the Encoder from each of the X samples. Based on this, we mask 
important feature vectors (replacing them with random value vectors). We have also constructed a comparison strategy that randomly 
selects the same number of feature vectors and randomizes them. It compares the impact of these two types of label vector masking 
methods on evaluation indicators. The process for Mirflickr is similar to that for yeast. Table 13 shows the impact of these two label 
vector masking methods on the yeast and Mirflickr datasets. 

From the results shown in Tables 12 and 13, it is evident that for the original sample features, masking based on gradients leads to 
significant changes (either increases or decreases) in evaluation indicators compared to random masking. Similarly, for the semantic 
features of labels, gradient-guided masking also results in more pronounced changes in evaluation indicators (increase or decrease) 

Table 8 
Results comparison for PML methods on AP criterion.  

Datasets PML-ED P-VLS P-MAP PML-LFC PML-NI NATAL PML-LCom PAMB 

YeastBP 0.420 ± 
0.109(1) 

0.065 ±
0.010(8) 

0.120 ±
0.039(6) 

0.370 ±
0.068(3) 

0.361 ±
0.059(4) 

0.402 ±
0.103(2) 

0.311 ±
0.061(5) 

0.066 ±
0.012(7) 

YeastCC 0.578 ±
0.123(2) 

0.139 ±
0.021(7) 

0.246 ±
0.066(6) 

0.542 ±
0.089(3) 

0.518 ±
0.082(4) 

0.591 ± 
0.092(1) 

0.475 ±
0.064(5) 

0.125 ±
0.024(8) 

YeastMF 0.437 ±
0.096(2) 

0.138 ±
0.023(7) 

0.209 ±
0.044(6) 

0.428 ±
0.028(3) 

0.405 ±
0.034(4) 

0.452 ± 
0.039(1) 

0.399 ±
0.032(5) 

0.129 ±
0.019(8) 

bibtex 0.557 ±
0.012(3) 

0.283 ±
0.011(6) 

0.184 ±
0.008(7) 

0.590 ± 
0.011(1) 

0.560 ±
0.010(2) 

0.513 ±
0.009(4) 

0.480 ±
0.011(5) 

0.133 ±
0.013(8) 

birds 0.409 ±
0.035(7) 

0.537 ±
0.054(3) 

0.456 ±
0.050(5) 

0.409 ±
0.049(8) 

0.548 ± 
0.037(1) 

0.545 ±
0.046(2) 

0.415 ±
0.049(6) 

0.515 ±
0.059(4) 

CAL500 0.494 ±
0.012(4) 

0.339 ±
0.013(6) 

0.507 ± 
0.014(1) 

0.496 ±
0.012(3) 

0.491 ±
0.026(5) 

0.264 ±
0.029(7) 

0.497 ±
0.011(2) 

NA(8) 

CHD_49 0.777 ±
0.049(5) 

0.775 ±
0.063(6) 

0.784 ±
0.072(2) 

0.780 ±
0.050(4) 

0.781 ±
0.044(3) 

0.645 ±
0.034(8) 

0.786 ± 
0.049(1) 

0.765 ±
0.059(7) 

corel5k 0.192 ±
0.041(4) 

0.150 ±
0.039(7) 

0.155 ±
0.038(6) 

0.224 ± 
0.042(1) 

0.196 ±
0.037(3) 

0.171 ±
0.053(5) 

0.198 ±
0.035(2) 

0.142 ±
0.027(8) 

delicious 0.378 ± 
0.006(1) 

0.223 ±
0.005(7) 

0.247 ±
0.005(6) 

0.360 ±
0.004(4) 

0.365 ±
0.005(3) 

0.303 ±
0.005(5) 

0.366 ±
0.005(2) 

NA(8) 

Emotions 0.691 ±
0.055(6) 

0.805 ±
0.029(2) 

0.796 ±
0.030(3) 

0.600 ±
0.041(8) 

0.789 ±
0.026(4) 

0.780 ±
0.031(5) 

0.671 ±
0.045(7) 

0.810 ± 
0.042(1) 

enron 0.658 ± 
0.061(1) 

0.424 ±
0.130(6) 

0.584 ±
0.070(3) 

0.656 ±
0.065(2) 

0.501 ±
0.068(5) 

0.282 ±
0.247(8) 

0.578 ±
0.061(4) 

0.403 ±
0.072(7) 

Eurlex-dc 0.857 ± 
0.004(1) 

0.367 ±
0.007(7) 

0.426 ±
0.007(6) 

0.767 ±
0.007(2) 

0.705 ±
0.005(3) 

0.566 ±
0.010(5) 

0.618 ±
0.011(4) 

NA(8) 

Eurlex-sm 0.883 ± 
0.004(1) 

0.421 ±
0.009(8) 

0.492 ±
0.008(7) 

0.815 ±
0.004(2) 

0.722 ±
0.005(4) 

0.620 ±
0.011(6) 

0.742 ±
0.035(3) 

0.649 ±
0.007(5) 

Flags 0.797 ±
0.046(3) 

0.808 ±
0.049(2) 

0.809 ± 
0.042(1) 

0.795 ±
0.044(5) 

0.797 ±
0.049(4) 

0.689 ±
0.043(8) 

0.793 ±
0.050(6) 

0.747 ±
0.049(7) 

genbase 0.995 ± 
0.004(1) 

0.060 ±
0.011(8) 

0.502 ±
0.144(7) 

0.975 ±
0.018(5) 

0.992 ±
0.010(3) 

0.995 ±
0.007(2) 

0.989 ±
0.010(4) 

0.968 ±
0.024(6) 

GpositivePseAAC 0.798 ±
0.093(4) 

0.829 ± 
0.098(1) 

0.710 ±
0.183(6) 

0.808 ±
0.097(2) 

0.753 ±
0.090(5) 

0.802 ±
0.089(3) 

0.664 ±
0.232(7) 

0.493 ±
0.144(8) 

Image 0.697 ±
0.079(3) 

0.758 ± 
0.053(1) 

0.618 ±
0.150(7) 

0.619 ±
0.135(6) 

0.671 ±
0.096(4) 

0.706 ±
0.083(2) 

0.465 ±
0.155(8) 

0.653 ±
0.095(5) 

mediamill 0.741 ± 
0.013(1) 

0.390 ±
0.032(8) 

0.696 ±
0.010(3) 

0.675 ±
0.010(5) 

0.721 ±
0.009(2) 

0.525 ±
0.021(7) 

0.690 ±
0.010(4) 

0.548 ±
0.018(6) 

medical 0.859 ±
0.035(4) 

0.746 ±
0.033(6) 

0.604 ±
0.050(7) 

0.865 ±
0.041(3) 

0.896 ± 
0.032(1) 

0.837 ±
0.041(5) 

0.890 ±
0.037(2) 

0.338 ±
0.069(8) 

scene 0.806 ±
0.086(2) 

0.826 ± 
0.060(1) 

0.716 ±
0.090(6) 

0.733 ±
0.105(4) 

0.722 ±
0.092(5) 

0.774 ±
0.070(3) 

0.385 ±
0.145(7) 

0.289 ±
0.051(8) 

Slashdot 0.506 ±
0.038(5) 

0.322 ±
0.027(8) 

0.325 ±
0.029(7) 

0.591 ± 
0.028(1) 

0.548 ±
0.029(4) 

0.585 ±
0.018(2) 

0.560 ±
0.032(3) 

0.372 ±
0.023(6) 

Water-quality 0.645 ±
0.067(2) 

0.627 ±
0.064(6) 

0.649 ± 
0.060(1) 

0.632 ±
0.065(4) 

0.644 ±
0.065(3) 

0.606 ±
0.058(8) 

0.629 ±
0.067(5) 

0.614 ±
0.057(7) 

yahoo_Entertainment 0.656 ± 
0.010(1) 

0.141 ±
0.002(8) 

0.441 ±
0.009(7) 

0.632 ±
0.012(2) 

0.567 ±
0.015(4) 

0.446 ±
0.019(6) 

0.626 ±
0.012(3) 

0.476 ±
0.020(5) 

yahoo_Health 0.676 ± 
0.008(1) 

0.105 ±
0.002(8) 

0.532 ±
0.012(5) 

0.642 ±
0.010(3) 

0.584 ±
0.012(4) 

0.422 ±
0.013(7) 

0.646 ±
0.011(2) 

0.424 ±
0.015(6) 

yeast 0.762 ± 
0.015(1) 

0.748 ±
0.012(4) 

0.737 ±
0.012(5) 

0.643 ±
0.013(7) 

0.752 ±
0.012(3) 

0.603 ±
0.017(8) 

0.756 ±
0.012(2) 

0.698 ±
0.016(6) 

Mirflickr 0.804 ±
0.050(2) 

0.686 ±
0.052(6) 

0.807 ± 
0.149(1) 

0.582 ±
0.072(8) 

0.783 ±
0.053(4) 

0.660 ±
0.101(7) 

0.795 ±
0.059(3) 

0.768 ±
0.048(5) 

Music_style 0.644 ±
0.012(5) 

0.711 ±
0.010(4) 

0.722 ±
0.010(2) 

0.315 ±
0.039(8) 

0.738 ± 
0.011(1) 

0.548 ±
0.011(6) 

0.480 ±
0.178(7) 

0.720 ±
0.013(3) 

Music_emotion 0.504 ±
0.015(6) 

0.615 ±
0.014(2) 

0.588 ±
0.014(5) 

0.408 ±
0.029(8) 

0.609 ±
0.013(3) 

0.596 ±
0.009(4) 

0.428 ±
0.092(7) 

0.644 ± 
0.011(1)  
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compared to random masking. The outcomes of the masking on both the original sample features and label semantic features indicate 
that the Encoder has successfully extracted relevant features of the instance. Furthermore, the Decoder has effectively extracted high- 
order correlation relationships in the label semantic features, thereby verifying the effectiveness of PML-ED. 

Table 9 
Results comparison for DL-based PML methods.  

Datasets PML methods HL RL OE Cove AP 

Music_style PML-ED 0.184 0.256 0.406 0.318 0.644 
PML-MT NA NA NA NA NA 
PML-GAN 0.115 0.145 0.347 NA 0.732 

Mirflickr PML-ED 0.194 0.115 0.287 0.221 0.804 
PML-MT 0.173 0.126 0.333 0.225 0.807 
PML-GAN 0.17 0.124 0.236 NA 0.777 

Music_emotion PML-ED 0.241 0.368 0.593 0.511 0.504 
PML-MT 0.207 0.236 0.449 0.4 0.627 
PML-GAN 0.2 0.242 0.45 NA 0.621 

Image PML-ED 0.247 0.242 0.487 0.247 0.697 
PML-MT 0.22 0.177 0.32 0.196 0.78 
PML-GAN 0.202 0.191 0.342 NA 0.775 

Eurlex_dc PML-ED 0.001 0.014 0.166 0.020 0.857 
PML-MT 0.05 0.056 0.284 0.055 0.803 
PML-GAN 0.044 0.067 0.307 NA 0.797 

Eurlex_sm PML-ED 0.005 0.012 0.095 0.032 0.883 
PML-MT 0.088 0.117 0.333 0.169 0.718 
PML-GAN 0.083 0.122 0.339 NA 0.72  
PML-ED 0.120 0.113 0.324 0.109 0.806 

scene PML-MT 0.151 0.106 0.288 0.103 0.814  
PML-GAN 0.132 0.123 0.321 NA 0.801  
PML-ED 0.201 0.171 0.234 0.465 0.762 

yeast PML-MT NA NA NA NA NA  
PML-GAN 0.213 0.194 0.245 NA 0.732 

enron PML-ED 0.054 0.102 0.273 0.289 0.658 
PML-MT 0.187 0.166 0.288 0.375 0.68 
PML-GAN 0.186 0.182 0.307 NA 0.665 

corel5k PML-ED 0.011 0.229 0.765 0.484 0.192 
PML-MT 0.113 0.3 0.696 0.392 0.435 
PML-GAN 0.118 0.295 0.685 NA 0.441 

delicious PML-ED 0.018 0.129 0.333 0.593 0.378 
PML-MT 0.25 0.252 0.36 0.556 0.635 
PML-GAN 0.249 0.258 0.368 NA 0.63  

Fig. 5. Comparison results using “win/draw/lose” for PML-ED, PML-MT and PML-GAN.  
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Table 10 
Time complexity of compared methods.  

PML Methods Time Complexity 

Training process Prediction process 

P-VLS O
(
m2(d + k + Tq)+mF Q(m,m)+q2 ( F B (m, d) + m ⋅ F ′

B (d)
) )

O
(
q2 ⋅ F ′

B (d)
)

P-MAP O
(
m2(d + k + Tq)+m ⋅ F Q(m,m)+q2 ( F B (m, d) + mk ⋅ F ′

B (d)
) )

O
(
mq(d + k + q)+q2k ⋅ F ′

B (d)
)

PML-LCom O
(

md+mr(q+d)T2
)

O(dq)

PAMB O
(
it • m+l

(
dm2 + q + dNs

) )
O(ldNs +mq)

PML-LFC O(T(F QP(mq,mq) + F QP(md, dq) )+mq) ) O(dq)
PML-NI O(T(F QP(mq,mq) + F QP(dq,mq) )+mdq) ) O(dq)
NATAL O(T*(q + m)dr ) O(dq)
PML-MT O

(
T*d2m

)
O
(

T*d2m
)

PML-GAN O
(

T*d2m
)

O
(

T*d2m
)

PML-ED O
(

T(m2d+md2k2q
)

O
(

d2k2q
)

Table 11 
The running time (seconds) of eight compared algorithms.  

Datasets PML-ED P-VLS P-MAP PML-LFC PML-NI NATAL PML-LCom PAMB 

YeastBP 2720 205 174 1926 1519 13,585 1786 9322 
YeastCC 914 59 59 501 827 4753 444 5514 
YeastMF 751 55 58 503 706 4904 441 7954 
bibtex 2069 9731 5223 2185 290 3246 607 22,825 
birds 92 2 1 6 2 12 2 5 
CAL500 160 22 21 30 21 9 30 – 
CHD_49 68 <1 <1 11 1 7 2 4 
corel5k 3739 1272 1003 1209 529 569 379 645 
delicious 36189 24,160 22,366 20,775 6370 4798 55,313 –- 
Emotions 189 <1 <1 14 1 8 2 4 
enron 227 67 30 98 28 243 29 230 
Eurlex-dc 41,964 280,888 196,436 36,076 2698 58,946 24,924 –- 
Eurlex-sm 9515 96,540 54,920 24,825 1329 52,025 13,533 261,325 
Flags 24 <1 <1 2 <1 1 <1 <1 
genbase 127 1 1 17 23 99 11 32 
GpositivePseAAC 85 6 3 12 2 35 <1 47 
Image 386 13 8 110 3 87 10 167 
mediamill 8699 3627 2641 58,093 845 109,535 21,506 5681 
medical 200 28 13 40 34 203 25 303 
scene 382 17 11 159 4 107 18 628 
Slashdot 371 119 41 479 26 709 34 1901 
Water-quality 215 1 1 29 4 13 6 21 
yahoo_Entertainment 5921 4790 8545 30,760 32,589 485,364 6157 439,048 
yahoo_Health 4574 2321 3763 21,018 27,432 251,176 5903 201,396 
yeast 349 9 6 166 7 157 35 22 
Mirflickr 1297 58 40 3207 15 5911 656 443 
Music_style 935 47 32 1414 14 2456 116 39 
Music_emotion 919 57 37 1416 15 2456 94 95  

Table 12 
Comparison of two original sample feature masks on the datasets of yeast and Mirflickr.  

Dataset Results HL RL OE Cove AP 

yeast Original result 0.201  0.171  0.234  0.465 0.762 
Result based on gradient mask 0.341  0.481  0.730  0.761 0.446 
Changes in evaluation criteria +69.7 %  +181.3 %  +212.0 %  +63.7 % − 41.5 % 
Result based on random mask 0.285  0.318  0.356  0.646 0.622 
Changes in evaluation criteria +41.8 %  +86.0 %  +52.1 %  +38.9 % -18.4 % 

Mirflickr Original result 0.194  0.115  0.287  0.221 0.804 
Result based on gradient mask 0.270  0.291  0.513  0.362 0.634 
Changes in evaluation criteria +39.2 %  +153.0 %  +78.7 %  +63.8 % − 21.1 % 
Result based on random mask 0.264  0.225  0.440  0.315 0.689 
Changes in evaluation criteria +36.1 %  +95.7 %  +53.3 %  +42.5 % − 14.3 %  
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4.4.6. Convergence analysis 
To objectively analyze the convergence of the proposed PML-ED method, three different scale of the datasets: genbase, CAL500 and 

delicious, were chosen because they represent the different sizes (27, 174 and 983 labels) in the label set. The corresponding proportion 
of noisy labels for each of the datasets is 53.99 %, 51.26 % and 61.28 %, respectively. Fig. 6 shows the change in the objective function 
value, defined in Eq. (14) on the three datasets for each iteration. We can see that the loss curves fall fast within a couple of iterations 
and then tend to be stable. Hence, the results empirically verify the convergence of the PML-ED method in practice. 

4.5. Statistical test of experimental results 

Two statistical tests, the Friedman test and Nemenyi test [5], were used to test whether the ranks of the methods significantly differ 
or not. The Friedman test statistics FF and the corresponding critical values for each evaluation criteria are shown in Table 14. Taking a 
significance level of φ = 0.05, the null hypothesis that the compared methods perform equally is clearly rejected for all evaluation 
criteria. The Nemenyi test further investigates whether each of the methods performs equally well against the others. The performance 

of the two methods significantly differs if the difference in their average is over the critical difference CD = qφ

̅̅̅̅̅̅̅̅̅̅̅
k(k+1)

6N

√

. qφ is 3.031 and 
the CD is calculated as 1.9842 (k = 8, N = 28) for φ = 0.05. The CDs are outlined in Fig. 7. The compared methods with average ranks 
within a CD to that of PML-ED are covered by a red line. In another word, uncovered methods thus have a significantly worse per-
formance than PML-ED. 

By looking at RL, for example, the average rank for PML-ED is 2.786 and the critical value is 4.770 after adding the CD. Given that 
the average ranks of P-VLS, NATAL and PAMB are greater than 4.770, they are classified as worse methods. However, there is no 
statistical evidence to assert that PML-ED outperforms the rest of the compared methods under RL. 

Table 13 
Comparison of two label semantic feature masks on the datasets of yeast and Mirflickr.  

Dataset Results HL RL OE Cove AP 

yeast Original result  0.201  0.171  0.234  0.465  0.762 
Result based on gradient mask  0.245  0.269  0.252  0.590  0.681 
Changes in evaluation criteria  +21.9 %  +57.3 %  +7.7 %  +26.9 %  − 10.6 % 
Result based on random mask  0.211  0.183  0.248  0.479  0.750 
Changes in evaluation criteria  +5.0 %  +7.0 %  +6.0 %  +3.0 %  -1.6 % 

Mirflickr Original result  0.194  0.115  0.287  0.221  0.804 
Result based on gradient mask  0.272  0.246  0.536  0.323  0.655 
Changes in evaluation criteria  +40.2 %  +113.9 %  +86.8 %  +46.2 %  − 18.5 % 
Result based on random mask  0.194  0.137  0.371  0.239  0.764 
Changes in evaluation criteria  +0.0 %  +19.1 %  +29.3 %  +8.1 %  − 5.0 %  

Fig. 6. Convergence analysis of PML-ED on delicious, CAL500 and genbase datasets.  
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5. Limitation and discussion 

As demonstrated in Section 4.4.4, although PML-ED runs faster than PML-LFC, NATAL, and PAMB on most datasets, it still has a 
long running time on some large-scale datasets, such as Eurlex-dc and Eurlex-sm. On these datasets, all compared methods exhibit long 
running times, which limits PML-ED’s application in scenarios with high runtime requirements. 

The application of the proposed PML-ED method in scenarios involving sensitive data, such as healthcare, finance, or personal data 
management, raises several ethical implications that must be carefully considered. One primary concern is the protection of individual 
privacy. Given that PML-ED is capable of handling large datasets with noisy labels, there is a risk that sensitive information could be 
inadvertently revealed or misinterpreted, especially if the data includes personal or confidential details. As shown in Table 2, PML 
methods have been applied in the health domain where data is sensitive, including clinical reports (medical dataset) and data on 
coronary heart disease (CHD-49 dataset). Improper handling of such data could raise potential ethical issues. Mitigating the ethical risk 
of private data protection, especially in the context of advanced techniques like PML-ED, involves a multifaceted approach. Firstly, 
ensuring robust data anonymization is critical, which requires removing or encrypting identifiable information so that individual data 
subjects cannot be easily recognized. Techniques like differential privacy can be employed to preserve overall data utility while 
protecting individual data points. Secondly, implementing strict access controls and data governance policies is essential. Access to 
sensitive data should be limited to authorized personnel only, and clear protocols should be established for data handling, processing, 
and storage. Furthermore, incorporating transparency into PML methods involves developing models in a way that their decisions can 
be easily interpreted and explained to non-experts. Explainable AI helps in understanding how and why certain data is used or a 

Table 14 
Summary of the Friedman Statistics FF (k = 8, N = 28) and the critical value (k: #comparing 
methods; N: #benchmark functions).  

Criteria FF Critical Value (φ = 0.05) 

HL  13.4557 2.0583 
RL  6.0676 
OE  3.7016 
Cove  6.8791 
AP  6.6840  

Fig. 7. Comparison of PML-ED (control method) against other compared methods using the Nemenyi test.  
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particular decision is made. It is important in scenarios where incorrect or biased decisions could have serious implications. 

6. Conclusions 

PML has widely applied in the real life, but is challenging in the field of machine learning, because the noisy labels make the MLL 
issue more complex. In this work, we propose a novel method for PML based on the Encoder-Decoder framework (PML-ED). The 
method not only leverages the KNN label attention mechanism and the conditional layer normalization model to extract high-order 
correlations of labels but also exhibits versatility across various application scenarios due to its fewer prior assumptions within the 
Encoder-Decoder framework. Experimental results show that the proposed method achieves the highest average ranking across five 
evaluation criteria compared with other PML algorithms. Some extra efforts will be required to improve and extend the PML-ED 
method in future. To enhance the computational efficiency of the PML-ED method, DPC technology [12,25] could be utilized. 
Additionally, few-shot PML and the integration of advanced feature selection methods [8,9] with PML are other research issues that 
deserve deeper investigation. 
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