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A B S T R A C T   

This study investigates the combination of audio and image data to classify road conditions, particularly focusing 
on loose gravel scenarios. The dataset underwent binary categorisation, comprising audio segments capturing 
gravel sounds and corresponding images. Early feature fusion, utilising a pre-trained Very Deep Convolutional 
Networks 19 (VGG19) and Principal component analysis (PCA), improved the accuracy of the Random Forest 
classifier, surpassing other models in accuracy, precision, recall, and F1-score. Late fusion, involving decision- 
level processing with logical disjunction and conjunction gates (AND and OR) in combination with individual 
classifiers for images and audio based on Densely Connected Convolutional Networks 121 (DenseNet121), 
demonstrated notable performance, especially with the OR gate, achieving 97 % accuracy. The late fusion 
method enhances adaptability by compensating for limitations in one modality with information from the other. 
Adapting maintenance based on identified road conditions minimises unnecessary environmental impact. This 
method can help to identify loose gravel on gravel roads, substantially improving road safety and implementing a 
precise maintenance strategy through a data-driven approach.   

1. Introduction 

Loose gravel on gravel roads significantly challenges road safety and 
maintenance efforts. Loose gravel can lead to reduced traction, vehicle 
skidding, and increased dust emissions, potentially causing hazardous 
conditions for drivers and pedestrians alike. Accurate and timely 
detection of loose gravel is paramount for traffic agencies to initiate 
maintenance measures promptly and ensure the safety of road users. 

Traditional methods of loose gravel detection on gravel roads have 
relied on manual inspections, often limited in scope and subject to 
human error. In recent years, machine learning and multimodal sensor 
fusion advancements have provided opportunities to revolutionise 
gravel road condition assessment, offering a more data-driven and 
precise approach to detecting loose gravel. 

In [1,2], the possibility of objectively classifying the loose gravel 
conditions using audio and images independently was investigated, and 
the results were promising. This paper introduces an approach to 
detecting loose gravel on gravel roads, utilising the fusion of spectro-
grams from audio recordings and images captured from the road surface. 
This multimodal fusion aims to significantly enhance the accuracy and 
reliability of loose gravel detection, aligning closely with the standards 

set forth by road traffic agencies worldwide. 
The proposed methodology harnesses the synergistic nature of audio 

and image data, recognising that each modality brings unique insights 
into loose gravel detection. Audio spectrograms capture acoustic sig-
natures, such as gravel impacts, surface disturbances, and vehicle- 
induced vibrations, offering valuable acoustic signals indicative of 
loose gravel presence. Meanwhile, images provide high-resolution vi-
sual information about the road surface, enabling the detection of loose 
gravel patches, displacement, and surface irregularities. 

This paper examines two fusion methods specifically designed for 
detecting loose gravel: feature-level fusion and decision-level fusion. 
Feature-level fusion involves combining features from two different 
sources-in this case, images and audio from gravel roads. On the other 
hand, decision-level fusion occurs at a later stage, combining decisions 
from models trained separately on images and audio. Fusion techniques 
offer a notable advantage in classification by enhancing accuracy and 
robustness. This advantage stems from their ability to effectively utilise 
complementary information from different sources or modalities, 
addressing the limitations of individual methods. Integrating data mo-
dalities or decision outputs improves accuracy, reliability, and adapt-
ability, particularly in handling complex classification tasks [3,4] 
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The suggested framework for loose gravel detection aims to provide 
an objective method aligning with the Swedish Road Transportation 
Agency (Trafikverket) standards. Automating the loose gravel assess-
ment would improve safety conditions on gravel roads and decrease 
maintenance response times. 

2. Literature review 

There are many studies utilising the multimodal approaches for 
classification tasks. Multimodal methodologies benefit classification 
tasks [3–5]. By seamlessly integrating information from diverse mo-
dalities, these approaches exhibit enhanced performance compared to 
their unimodal counterparts. The fusion of different modalities provides 
a robust and redundant framework, ensuring the system’s resilience, 
even in noisy or incomplete data. Multimodal models excel in handling 
ambiguity and demonstrate improved generalisation, making them 
adaptable across various scenarios and datasets. Their versatility ex-
tends across domains, such as computer vision, natural language pro-
cessing, and healthcare ([6–8]). 

Moreover, these methodologies mirror the human-like perception 
that integrates multiple sensory inputs, aligning with the holistic nature 
of human cognition. Multimodal models prove valuable in scenarios 
where data may be incomplete or missing in one modality, and they 
facilitate transfer learning, enabling the transfer of knowledge between 
modalities or tasks. In essence, the advantages of multimodal method-
ologies lie in their ability to harness the strengths of different modalities 
synergistically, resulting in more robust, versatile, and practical solu-
tions for classification tasks. 

Considering the maintenance of gravel roads in Sweden by the Tra-
fikverket, the current assessment methods involve subjective evalua-
tions based on guidelines, incorporating factors such as crossfall, 
irregularities, loose gravel, and dust [9]. These are rated subjectively 
and, in some cases, involve manual measurements using specialised 
equipment. However, due to the high costs associated with alternative 
objective methods, such as laser scanners, they are typically not 
employed, prioritising the minimisation of gravel road maintenance 
expenses [10]. Fig. 1 illustrates loose gravel conditions and their grades, 
depicting Road Type 1 as well-maintained and Road Type 4 as severely 
deteriorated, following the [9] grading system. This visual reference 
provides a clear insight into the spectrum of gravel road conditions 
under assessment. 

A dust classification algorithm was developed by [11] for the Gravel 
Roads Management System, using smartphone images to classify dust 
amounts on gravel roads accurately. The algorithm was validated 
against dustometer measurements. The results showed that the algo-
rithm is a cost-effective and accurate alternative, offering potential 
assistance to local agencies in maintenance planning regarding dust 
evaluation on gravel roads. The study explores challenges with gravel 
pavement, noting its lower construction costs but inferior performance 
to asphalt. Dust emission, deformation, and deepening ripples impact 
vehicle vibrations, fuel consumption, and driving comfort. The research 
proposes a methodology for gravel pavement evaluation, measuring 
profiles and analysing the international roughness index (IRI). Findings 

stress the importance of timely maintenance. The study’s objectives 
include adapting road roughness indicators for gravel pavement and 
evaluating dynamic responses, with specific speed ranges (30–45 km/h 
and 90 km/h) indicating the need for careful prediction of safe driving 
speeds. 

In a recent study by [12], a semi-automated approach utilising 
UAV-captured images from a one-kilometre road segment was intro-
duced to identify and extract parameters of unpaved road surfaces, such 
as potholes and rutting. This method addresses the crucial necessity for 
efficient road condition surveys. The research was conducted in the 
Ofirikrom Municipality, Ghana, showcasing the correlation between 
UAV imagery and conventional field methods, suggesting the potential 
for cost-effective road maintenance monitoring. Although the study was 
confined to a limited road length, it suggests future endeavours for a 
fully automated methodology to enhance road condition assessment 
further. 

The literature review highlights a predominant emphasis on overall 
road roughness in existing research, revealing a relatively lesser focus on 
identifying distinct distress types on gravel roads. Notably, there is a 
research gap in the automation of loose aggregate assessment ([13–16]). 
There is potential in exploring avenues that involve integrating data 
from various sources, including sound and images, offering promise for 
the automated assessment of loose gravel on these roads. 

3. Methodology 

This section will discuss methodology, including an overview of the 
study’s methodology, starting with an overview of multimodal fusion, 
the data collection approach, followed by a discussion of the pre-
processing steps. Subsequently, the two distinct techniques utilised in 
this study, feature-level early fusion, and decision-level fusion, are 
introduced. 

3.1. Overview of multimodal fusion techniques 

This study incorporates multimodal fusion techniques. The subse-
quent section offers a brief technical introduction to general fusion 
methods. 

Multimodal fusion techniques are methodologies used to combine 
information or data from multiple sources or modalities to enhance the 
understanding or performance of a system or application. These tech-
niques are valuable for improving models used in affect recognition 
tasks, which are analysed based on data from various sources such as 
audio, visual, physiology, and more. Multimodal fusion holds significant 
merit in the realm of classification tasks. Fusing information from 
multiple modalities can enrich the feature space, enhance the discrim-
inative power of models, and provide a more comprehensive under-
standing of complex phenomena. The literature discusses three joint 
fusion strategies: feature-level, decision-level (or score-level), and 
model-level fusion [17]. These are discussed below:  

• Feature-level fusion: This strategy combines features extracted from 
different modalities by creating a single feature vector encompassing 

Fig. 1. showcases images of loose gravel conditions with their respective grades. Road Type 1 illustrates a well-maintained road, while Road Type 4 depicts a 
severely deteriorated gravel road [9]. 
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information from all modalities. This approach mimics how humans 
process information, where features from various sources, such as 
audio and visual cues, are integrated before making predictions. 
Feature-level fusion often requires large training datasets because it 
captures more information than a single modality alone. Addition-
ally, the modalities should have corresponding data for this strategy 
to work effectively. One major advantage is that predictions can still 
be made even if data from one modality are missing [18].  

• Decision-level (Score-level) fusion: In this strategy, each modality is 
used independently to make predictions, and then the scores or re-
sults from each modality are combined. A drawback of this approach 
is that if data from one modality are missing, the full potential of that 
modality cannot be realised. Fusion can be as simple as a majority 
vote for classification tasks, but more sophisticated versions may be 
introduced, e.g., incorporating learning weights. For regression 
tasks, a linear regressor can be trained using the predictions from 
each modality, and its weights can be used for the fusion.  

• Model-level (Hybrid-level) fusion: This strategy combines the 
strengths of both feature-level and decision-level fusion strategies. 
For instance, a model-level fusion might involve performing feature- 
level fusion for certain modalities and then combining those pre-
dictions with scores from other modalities that were processed 
independently. This approach offers flexibility and can adapt to the 
specific requirements of the task [19]. An example of model-level 
fusion is the method proposed by [20], which combines the results 
of feature-level fusion with scores from independently processed 
modalities. This hybrid approach aims to harness the benefits of 
integrating features from some modalities, while still considering the 
unique information provided by others. This fusion technique can 
improve performance in affect recognition tasks, especially when 
dealing with complex and diverse data from multiple sources [21]. 

3.2. Data collection 

The data collection involved using two HERO7 GoPro cameras 
manufactured by GoPro Inc. based in San Mateo, CA, USA. One camera 
was positioned inside a vehicle to capture audio and video data, while a 
second camera was mounted on the car’s bonnet to obtain recordings 
with an improved view of the roads. The recordings were made during 
the summer seasons of 2020 and 2022 along gravel roads in Dalarna, 
Sweden. The car maintained a constant speed of 50 km/h during these 
recordings under dry and sunny weather conditions. It is important to 
note that certain portions of the recorded videos were excluded from the 
dataset. These excluded segments contained activities such as travelling 
to the selected road, turning the car around, driving at varying speeds, 
and conversations between the data collectors. These marked segments 
did not represent the gravel road conditions the study aimed to analyse. 

The dataset consisted of a total of 15 videos, with a combined 
duration of 1 h, 13 min, and 54 s (01:13:54). The purpose of this data 
collection was to investigate the gravel road conditions, utilising the 
audio and video recordings obtained from the GoPro camera. For more 
detailed information about the camera and vehicle specifications, refer 
to the publication by Saeed et al. [2] 

3.3. Preprocessing 

Audio and image data were extracted from recorded videos, resulting 
in separate datasets for both modalities. Preprocessing procedures were 
subsequently applied to each dataset. Roboflow’s Annotation Tool was 
instrumental in highlighting the gravel roads by creating bounding 
boxes and isolating the road sections. This approach was applied so that 
images with only the crucial aspects of the gravel roads are obtained, 
while discarding unrelated elements, such as the sky and vegetation. As 
a result, a new dataset containing solely the road information was 
generated with the assistance of Roboflow. 

Roboflow is a specialised platform tailored for developers and 

researchers dealing with visual data. It offers a comprehensive set of 
tools and services for tasks such as image annotation, dataset manage-
ment, data preparation, and even model deployment in computer vision 
and image processing [22]. In Fig. 2(a), Roboflow illustrates its capa-
bility to detect roads and segment the gravel road, excluding vegetation, 
as shown in Fig. 2(b). This process was undertaken to ensure that during 
subsequent classification, the algorithms focus on learning features 
extracted specifically from road conditions. 

A conversion process was employed for the audio data to transform 
the audio files into spectrograms, shown in Fig. 3. The audio data went 
through a conversion process, during which the audio signals were 
broken down into smaller segments, predominantly employing the 
Short-Time Fourier Transform (STFT) technique [23]. These temporal 
segments were subsequently translated into image representations, 
featuring time on one axis and frequency on the other. This trans-
formation resulted in the creation of spectrogram images, effectively 
rendering the audio data in a visual format conducive to integration 
with the existing image-based processing pipeline. 

3.4. Dataset 

Following the preprocessing of both the image and audio datasets, 
each dataset was categorised through labelling into two classes: 1 & 2 
and 3 & 4, aligning with Trafikverket’s classification, where 1 represents 
good road conditions, and 4 indicates the worst road conditions. The 
former had a combined count of 487 instances, while Classes 3&4 had a 
sum of 398 for both images and audio. The size of each data set in total 
was 885. The class labelling adheres to the guidelines outlined in the 
Trafikverket Road Maintenance Gravel Road assessment manual [9]. 
Considering the limited size of the available dataset, we have combined 
Classes 1 and 2, as well as 3 and 4. These can be considered as roads in 
good condition and roads in poor condition, respectively. In the case of 
audio labelling, each audio clip received its label based on its extraction 
from a corresponding video segment. For example, if the video segment 
indicated Road Types 1&2, the audio extracted from that section was 
labelled Classes 1&2. Table 1 presents the details of the dataset. 

Within this study, we have implemented both feature-level fusion 
and decision-level fusion. The following discussion elaborates on the 
particulars of the processes utilised in this study. 

3.5. Feature-level fusion 

In this study, features were extracted from road images and audio 
spectrograms using the VGG19, a pre-trained convolutional neural 
network architecture. VGG19 is recognised for its effectiveness in image 
classification and achieves feature extraction by guiding input data 
through its hierarchical layers. It progressively captures intricate pat-
terns and details [24]. The extracted features from road images and 
spectrograms are later combined through concatenation, creating a 
unified representation. This comprehensive and integrated representa-
tion is valuable for enhancing subsequent stages of analysis. 

After feature extraction and concatenation, feature reduction was 
applied using Principal Component Analysis (PCA), and the optimal 
number of components was determined using the elbow method. PCA 
transforms original features into orthogonal principal components, 
capturing maximum data variance. Projecting data onto a lower- 
dimensional subspace, PCA effectively reduces dimensionality while 
retaining crucial variance [25]. The elbow method identifies the "elbow 
point", where additional components cease to significantly increase 
explained variance [26]. 

After feature extraction, concatenation, and reduction, machine 
learning algorithms were trained on this feature set, specifically Random 
Forest, Multi-layer Perceptron (MLP), and XGBoost classifiers. Finally, 
the classification results were obtained. Fig. 4 illustrates how feature- 
level fusion works in this study, using gravel road images and audio 
spectrograms as inputs to produce a classification decision as the output. 
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It visually guides through the entire process. 
These classifiers are widely recognised for their efficacy across 

diverse domains [19,27–29]. The Random Forest classifier operates as 
an ensemble learning approach, uniting numerous decision trees to 
generate precise and resilient predictions. This involves training indi-
vidual trees on distinct data subsets and amalgamating their outcomes 
for the final predictions. Conversely, the Multi-layer Perceptron (MLP) is 
an artificial neural network tailored for intricate pattern recognition 
tasks. Comprising multiple layers of interconnected nodes, it undertakes 
data processing and transformation, each contributing to the network’s 
adeptness in capturing complex data relationships. The Gradient 
Boosting XGBoost algorithm incrementally constructs a sequence of 
weak learners, often decision trees. Each new learner addresses the er-
rors of its predecessors, fostering potent predictive capabilities [30]. 
This iterative strategy empowers XGBoost to manage intricate datasets 
proficiently. Each of these classifiers boasts unique merits, and their 
selection hinges on the specific attributes of the given problem (X. 
[31–33]). 

Fig. 2. Image (a) depicts gravel road detection, while image (b) exclusively displays the extracted roads from the image, omitting vegetation and sky.  

Fig. 3. Example of audio spectrogram obtained after audio preprocessing.  

Table 1 
Dataset summary: images and audio class distribution.   

1 &2 3&4 Total 

IMAGES 487 398 885 
AUDIO 487 398 885  

Fig. 4. Methodology used in this study for Feature-level Fusion.  
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3.6. Decision-level fusion 

The second fusion method employed in this study is decision-level 
fusion, and it is discussed below. It incorporates two variations using 
OR and AND rules. Fig. 5 illustrates the use of both decision-level and 
feature-level fusion used in this study. Fig. 5 gives a broad view of the 
decision fusion methods employed: both feature-level fusion and 
decision-level fusion. It focuses on explaining the key components of 
these fusion approaches Existing studies consistently demonstrate 
improved classification performance with decision fusion (K. [34–36]) 
emphasising the need for diverse techniques due to varied classifier 
outcomes [37]. 

3.6.1. Decision fusion with an OR rule 
The technique commonly known as majority voting, logical 

disjunction, or voting with a logical OR, is widely used in various 
studies. This includes applications such as person recognition using 
imperfect face images alongside supporting gait images, as well as in 
spam detection through videos and images. The use of decision fusion in 
this approach consistently leads to better performance in classification 
results [4,38]. In majority voting, the final prediction is based on the 
majority decision of the individual models. If most models predict a 
positive outcome (Class 1), the fused prediction will be positive. 
Otherwise, if the majority predicts a negative outcome (Class 0), the 
fused prediction will be negative. Consider two binary classifiers, C1 and 
C2, where each classifier makes a binary decision (0 or 1). The final 
decision Dfinal in the OR gate scenario is 1, if at least one of the decisions 
of classifiers DC1 or DC2 predicts 1. 

Dfinal = DC1 V DC2 (1) 

Here, ∨ represents the logical OR operation. 

3.6.2. Decision fusion with an AND rule 
This method is often called unanimous voting, or voting with a 

logical AND or Logical Conjunction. In unanimous voting, the final 
prediction is positive only if all individual models predict a positive 
outcome [39]. If any one model predicts a negative outcome, the fused 
prediction will be negative. This approach ensures that all models agree 
before making a positive prediction. 

Dfinal = DC1 Λ DC2 (2) 

Here, ⋀ represents the logical AND operation [4]. 
Both majority voting (OR rule) and unanimous voting (AND rule) are 

variations of voting-based ensemble methods commonly used to 

combine predictions from multiple models. The specific logical opera-
tions (OR and AND) determine how the predictions are aggregated to 
arrive at the final decision. These methods harness the collective 
knowledge of diverse models and enhance overall predictive perfor-
mance [40]. 

4. Results and discussion 

In this study, data extraction from video recordings encompassed 
both audio and image components. The audio segment specifically 
captured the auditory cues of gravel impacting the undersides of vehi-
cles, serving as a significant source of information regarding road con-
ditions. The dataset, categorised into binary Classes 1&2 and 3&4, aims 
to discern road conditions, especially in loose gravel scenarios, aligning 
with Trafikverket’s standards, where Class 1 signifies well-maintained 
roads and Class 4 indicates poor conditions. Classes 1&2 are combined 
to denote good road conditions, while Classes 3 and 4 signify areas 
needing maintenance. 

Audio and image data fusion were integrated to investigate the po-
tential enhancement of the classifier’s accuracy. Initially, early feature 
fusion was employed, involving the extraction of features from both 
audio spectrograms and images using the pre-trained convolutional 
neural network VGG19. These distinct features from both modalities 
were concatenated to create a unified feature space. Subsequently, PCA 
(Principal Component Analysis) was applied for dimensionality 
reduction. 

The Random Forest classifier, Multi-layer Perceptron, and XGBoost 
classifier were then trained using 80 % of the dataset and validated on 
the remaining 20 %. The experimental outcomes, as presented in 
Table 2, highlight the Random Forest classifier’s superior performance 
across metrics such as accuracy 0.9018, precision 0.9011, recall 0.9018, 
and F1-score 0.9014 compared to other models. 

A late fusion methodology, also known as decision-level fusion, as 
discussed previously in the methodology section, was explored to 

Fig. 5. illustrates the application of two fusion techniques in this study: (a) feature-based early fusion and (b) decision-level fusion.  

Table 2 
Classification results of various machine learning algorithms using the early 
feature fusion method.  

Algorithms Accuracy Precision Recall F1-score 

Random Forest Classifier 0.9018 0.9011 0.9018 0.9014 
MLP 0.8679 0.8841 0.8736 0.8654 
XGBoost Classifier 0.9075 0.8641 0.8736 0.8654  
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improve the results further. Two decision-level gates, namely AND and 
OR gates, were tested. Individual classifiers based on DenseNet121 were 
trained separately on each modality, i.e., images and audio. Subse-
quently, these classifiers were tested on the designated test dataset, 
resulting in individual accuracies of 0.95 for images and 0.92 for audio, 
respectively, as seen in Table 3. The fusion of their decisions was ach-
ieved through AND and OR gates. Notably, the OR gate demonstrated 
superior performance with an accuracy of 0.97. This accuracy was 
derived by comparing the test results with the ground truth labels. 

The superiority of late fusion results is evident, and late fusion 
methods also demonstrate increased adaptability to diverse input con-
ditions. These methods excel in scenarios where one modality may be 
afflicted by noise or incompleteness, as the other modality can effec-
tively compensate for these limitations. Each modality typically pos-
sesses unique strengths and weaknesses; for instance, images might 
excel in capturing visual details, while audio can contribute additional 
contextual information. Late fusion, as an approach, enables the fusion 
of data from both modalities (images and audio), thereby augmenting 
the overall system’s robustness through the utilisation of complemen-
tary information from distinct sources. 

5. Conclusion 

This study introduces a novel methodology that employs both audio 
and image data to detect loose gravel conditions on gravel roads. Audio 
clips from Road Classes 1&2 and 3&4, capturing varying degrees of 
gravel hitting the bottom of the car, were labelled into these two groups. 
The labelling process entailed a thorough examination of videos, 
extracting relevant segments, and categorising roads based on pre-
defined classes. These classes adhere to the labelling system of Tra-
fikverket, ranging from Class 1 to 4, where Class 1 represents a good 
road condition, and Class 4 indicates the worst condition. However, due 
to limitations in data volume, we combined Classes 1 and 2 into one 
category and Classes 3 and 4 into another. Subsequently, the audio 
segments were transformed into spectrograms. Using Roboflow anno-
tation tool, roads from images were isolated to ensure that the classifier 
learned features relevant to road conditions, while disregarding irrele-
vant elements such as vegetation and sky. The fusion technique involved 
combining decisions from two classifiers trained on gravel images and 
corresponding audio segments to enhance road classification. Both 
feature-level early fusion and decision-level late fusion techniques were 
evaluated, incorporating OR and AND gates. 

The decision-level approach using the OR gate exhibited superior 
accuracy in the classification process. The collected data from Swedish 
roads can be utilised to assess gravel road conditions in Sweden and 
similar terrains. Applications developed through this method can be 
deployed on cost-effective devices, such as smartphones for capturing 
data from gravel roads, and the classification results can be mapped on 
real maps, displaying the road profile. This could assist drivers in 
planning their trips and gaining knowledge of road conditions in 
advance. These applications empower road assessment agencies to 
conduct timely and unbiased evaluations of gravel conditions, particu-
larly concerning loose gravel. With additional data, the study’s scope 
could be broadened to classify gravel roads into four classes. The 
methodology is adaptable to other gravel road defects, contributing to a 
comprehensive system that provides insights into road status, including 
defects such as potholes, dust, and corrugations. The study advocates for 
data-driven decision-making by road maintenance agencies, stream-
lining prioritisation and resource allocation based on identified road 
conditions. The utilisation of audio and image data, particularly from 
smartphones, allows for remote monitoring, reducing the need for 
physical inspections and enhancing efficiency. Adapting maintenance 
strategies to the identified road conditions has the potential to minimise 
the unnecessary environmental impact associated with extensive road 
repair activities. The study’s reliance on easily accessible devices, such 
as smartphones, creates opportunities for community engagement in 

data collection, involving residents as contributors to road maintenance 
efforts. The study’s findings and methodology could serve as a catalyst 
for further research in the integration of audio and image data for 
assessing infrastructure, fostering continuous advancements in road 
maintenance technology. 
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