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Abstract
Transportation research has benefited from GPS tracking devices since a higher volume of 
data can be acquired. Trip information such as travel speed, time, and most visited loca-
tions can be easily extracted from raw GPS tracking data. However, transportation modes 
cannot be extracted directly and require more complex analytical processes. Common 
approaches for detecting travel modes heavily depend on manual labelling of trajectories 
with accurate trip information, which is inefficient in many aspects. This paper proposes a 
method of semi-supervised machine learning by using minimal labelled data. The method 
can accept GPS trajectory with adjustable length and extract latent information with long 
short-term memory (LSTM) Autoencoder. The method adopts a deep neural network ar-
chitecture with three hidden layers to map the latent information to detect transportation 
mode. The proposed method is assessed by applying it to the case study where an accuracy 
of 93.94% can be achieved, which significantly outperforms similar studies.

Keywords Travel identification · LSTM Autoencoder · Unsupervised learning · Deep 
learning · GPS tracking data

Introduction

Understanding travel and human mobility behaviors, traffic demands, and the impact of 
transportation infrastructure on people is crucial in transportation science. The traditional 
data collection methods were physical interviews, paper-based travel diaries, travel surveys, 
phone interviews, and internet web pages, where volunteers report why and how they travel 
to a destination (Shen and Stopher 2014; Wu et al. 2016). However, the traditional methods 
are time-consuming and error-prone, resulting in a low response rate (Dutta and Patra 2023; 
Tamim Kashifi et al. 2022).
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Global Positioning System (GPS) devices are ubiquitous tools used to record spatial and 
temporal information of human movement during trips and have significant application in 
transportation sector (Raza et al. 2022; Zhao et al. 2017). However, GPS tracking data can 
only record positional recording characteristics such as latitude, longitude, altitude, speed, 
and time without any information regarding which transportation mode is used during a 
trip. Therefore, using the large GPS tracking dataset to understand human behaviour pat-
terns in urban areas has led to various behavioral applications, including frequently visited 
locations, transportation mode detection, location-based activity (Ma et al. 2023; Roy et al. 
2022). Specifically, transportation mode detection studies, several data processing methods, 
and machine learning algorithms have been applied (Dabiri et al. 2019; Namdarpour et 
al. 2022; Yu 2020). In most of the current studies, five common transportation modes are 
detected (walk, bike, bus, car, and train). Notably, although applying a large GPS dataset 
can improve the accuracy level, the structure and size of the dataset that is used in current 
studies varied (Li et al. 2023; Ma et al. 2023). Some studies considered only a few users and 
trips, while others considered more than 100 users and recorded the data for a year (Dutta 
and Patra 2023; Marra et al. 2022). However, it is important to note that the definition of 
‘large dataset’ can vary depending on the specific research context and objectives.

Most of the studies in detecting transportation modes by using GPS tracking data have 
two steps. The first step is cleaning and processing the raw GPS tracking and removing the 
outliers. Each trip’s features such as velocity, acceleration, heading change rate, trip dis-
tance are computed in this step. In the second step, all features are applied to an algorithm 
to detect the transportation modes. Three main methodological approaches are commonly 
used in this step to detect the transportation modes: machine learning algorithms, statisti-
cal methods, and rule-based algorithms. Among these methods, machine learning meth-
ods, including supervised learning algorithms, semi-supervised learning, and unsupervised 
learning algorithms, are three approaches. A wide range of traditional machine learning 
algorithms such as decision tree, random forest, support vector machine has been widely 
applied (Nitsche et al. 2014; Sadeghian et al. 2022).

Fully supervised learning algorithms are most commonly used, and they require identifi-
cation and formulation of features manually before applying a machine learning algorithm, 
in order to detect the transportation modes. Unsupervised learning algorithms used a fully 
unlabeled GPS tracking dataset to detect the correct transportation mode (Lin et al. 2013; 
Patterson et al. 2003; Weinstein et al. 2010; Yazdizadeh et al. 2019).

Using semi-supervised learning can improve the efficiency while the accuracy can be 
retained even increased since only a small portion of raw GPS data needs to be labeled. 
Recently, a few studies have used the semi-supervised learning algorithm to detect transpor-
tation modes (Dabiri et al. 2019; Dutta and Patra 2023; Markos and Yu 2020; Zhang et al. 
2022). However, these approaches rely on the relatively old GPS tracking dataset, and the 
accuracy level of the proposed methods is rather low (below 80%).

This study proposes a novel semi-supervised deep learning algorithm to explore further 
the advantages of applying semi-supervised learning methods. This algorithm is applied 
to a large volume GPS tracking dataset. The potential for LSTM Autoencoder, and deep 
neural network (DNN) is examined. This attempt exposes the possibility of applying a more 
straightforward and efficient model to detect transportation modes.

The rest of this paper is organized as follows. Section 2 introduces the literature review 
of transportation mode detection research. Section 3 presents the proposed method in detail. 
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Section 4 presents the empirical analysis by applying the algorithm to accurate GPS data 
and discusses the results. Section 5 concludes the paper with highlights and main takeaways.

Literature review

To date, a large part of the literature has proposed methodology for transportation mode 
detection based on different data sources, including raw GPS tracking data (Dutta and Patra 
2023; Tamim Kashifi et al. 2022; Xiao et al. 2017), accelerometers (Alam et al. 2023; Nick 
et al. 2010), mobile-phone networks (Bachir et al. 2019; Xu et al. 2022; Zhagyparova et al. 
2023). A wide range of methods, such as rule-based methods, statistical methods, as well as 
the traditional supervised learning algorithms have been employed for detecting transporta-
tion modes, including, random forest, decision tree, support vector machine, and multi-layer 
perceptron (Li et al. 2021; Sadeghian et al. 2021; Wu et al. 2016). Using supervised learn-
ing algorithms to detect transportation mode requires the GPS tracking dataset to be fully 
labeled (Giri et al. 2022; Tamim Kashifi et al. 2022). Some studies have integrated Geo-
graphical information layers with GPS tracking data to improve the method’s performance 
(Gong et al. 2012; Lee and Kwan 2018; Li et al. 2021; Vinayaraj and Mede 2022). However, 
these studies used only one type of sensor to practically reach more accurate results (Xiao 
et al. 2017). This section focuses on reviewing studies that have used GPS tracking data to 
detect transportation modes using machine learning methods. Table 1. Shows the summary 
of the methods in transport mode detection studies.

Using a fully labelled dataset has been found challenging because manually labelling the 
data is time-consuming and contains human errors(Dabiri et al. 2020; Reddy et al. 2010; 
Roy et al. 2022). To improve classification efficiency, some transportation mode detection 
studies have employed GIS layer information into labeling (Roy et al. 2022). Roy et al. 
(2022) study, focuses on enhancing transportation mode detection using GPS data by incor-
porating geographic context. Results revealed that adding geographic context significantly 
improved accuracy, particularly with context-specific models, emphasizing the importance 
of local geography in mode detection. In other study done by Sadeghian et al. (2022) pro-
posed a stepwise methodology by combing three common methods (unsupervised learning 
method, GIS multi criteria-process, and supervised learning algorithms) that can achieve a 
high accuracy of 99% with use of only 10% labelled data. In our previous work (Sadeghian 
et al. 2022), we reported a 99% transport mode detection accuracy with the use of a differ-
ent methodology, which was applicable to a relatively small dataset. In that case, traditional 
machine learning methods, which require less data, were feasible. However, in the current 
study, we are dealing with a much larger dataset, which makes it impractical to apply tra-
ditional supervised learning methods due to their data-intensive nature. This shift in data-
set size and complexity necessitated the development of the current semi-supervised deep 
learning approach, which can effectively harness unlabeled data to enhance its accuracy and 
generalizability. Therefore, the choice of methodology is highly dependent on the dataset’s 
characteristics and scale, with the current approach being tailored to the challenges posed 
by larger and more diverse datasets.

Few approaches have used unsupervised learning to detect the transportation mode using 
fully unlabeled GPS tracking data. Patterson et al. (2003) proposed an unsupervised learn-
ing algorithm to detect three transportation modes (walk, car, and bus). This study used 
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an Expectation-Maximization (EM) method and speed as a crucial feature to distinguish 
between different modes. Moreover, in this study, the GIS layer information such as a bus-
road network, bus station, and parking spots was used. The model detected the correct trans-
portation mode with an accuracy of 84%, for 29 trips of one individual. In another study, Lin 
et al. (2013) proposed an unsupervised algorithm (MO detect algorithm) based on the Kol-
mogorov-Smirnov test. In this study, the model detected four-transportation modes (walk, 
bike, car, and bus) with an accuracy of 76%. The features computed in this study were 
average speed and maximum speed. However, the dataset used by Lin et al. (2013) was rela-
tively small and for only one volunteer over ten months. Dutta and Patra (2023) addressed 
the challenge of transportation mode detection using unsupervised learning due to limited 
labeled data and a large amount of unlabeled data. They proposed a method that combines 
point-level characteristics with GPS coordinates to extract joint probability densities using 
masked autoregressive flow (MAF) and applied K-means to find transportation modes, 
demonstrating its effectiveness compared to traditional machine learning approaches.

Semi-supervised algorithms have the potential to increase and improve the performance 
and accuracy of transportation mode detection, compared to traditional supervised and 
unsupervised algorithms (Li et al. 2021b). Semi-supervised algorithms require a downsized 
labeled dataset, while accuracy and efficiency can be improved, compared to supervised 
algorithms (Kumar et al. 2021; Moreau et al. 2021). Semi-supervised learning algorithms 
follow two categories to detect the correct transportation modes. The first group of semi-
supervised methods works with a combination of using an unsupervised learning algorithm 
as a pre-training step. Then, supervised learning algorithms are adjusted using the labelled 
dataset. The second group of semi-supervised methods works with a collaborative process 
where both supervised and unsupervised algorithms are trained simultaneously. A small 
portion of the labeled dataset is used for training, and the other unlabeled dataset is used for 
learning algorithms (Namdarpour et al. 2022; Yao et al. 2023).

Li et al. (2021b) presented a novel similarity entropy-based encoder-decoder (SEED) 
model for efficient transportation mode detection using GPS data. SEED utilized a semi-
supervised learning module based on similarity entropy to enhance performance. It 
achieved significant improvements over baseline methods, with a 5% increase in metrics 
like intersection over union. Rezaie et al. (2017) proposed a semi-supervised algorithm 
with an accuracy of 80% in detecting five transportation modes (walk, bike, car, bus, and 
train). The features that were used in this study were speed, duration of the trips, length of 
the trips, and the start and endpoint of the trips to the transit network. In another study by 
Dabiri et al. (2019b), a model with a combination of neural network and autoencoder was 
proposed. This study used four features including speed, acceleration, the distance between 
two points, and Jerk, to detect five transportation modes. Yazdizadeh et al. (2019) presented 
a semi-supervised algorithm for transportation mode detection based on a generative adver-
sarial network. This study used labeled and unlabeled datasets from random noise to train a 
generative model. However, the paper’s essential technical details were not well discussed, 
so assessing its validity was difficult. Yu (2020) introduced semi-supervised deep ensemble 
learning methods to use a minimal number of labelled data to detect the five transportation 
modes by using the same dataset as Dabiri and Heaslip (2018) and Zheng et al. (2008). 
The results indicated better performance of the model compared to the other two studies 
in terms of accuracy. They proved that the accuracy of the collected data had no impact on 
the proposed model’s performance. It is worth noting that the highest level of accuracy of 
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both deep learning-based studies (Dabiri and Heaslip 2018; Yu 2020) is still lower than the 
supervised studies (Feng and Timmermans 2016; Lari and Golroo 2015), which are purely 
based on the fully labelled dataset. In summary, the machine learning approach is the most 
common method used to detect transportation modes. Among the three machine learning 
methods, semi-supervised learning is the most commonly used to identify the correct trans-
portation modes. This may be due to the fact that most of the GPS data is unlabeled. Semi-
supervised algorithms work with a small amount of labelled data, while supervised learning 
needs the data to be fully labeled, which is time-consuming. In recent studies, deep learning 
has been used to detect transportation modes. To handle these disadvantages, this study in 
the following sections proposes a semi-supervised method to detect transportation modes 
based on GPS tracking dataset.

Methodology

This section proposes a new semi-supervised method (Fig. 1). First, we present in detail 
used data pre-processing methods, and then the architecture of the proposed method is 
presented. Afterwards, the data feature computation and extraction of latent information 
schemes are created with brief introductions to related preliminaries.

GPS dataset processing

The raw GPS tracking data were collected from September 2019 to September 2020, from 
91 volunteers in Borlänge, a city located in the central part of Sweden (Fig. 2(a, b, c, d)). 
Each volunteer carried a portable device, “Renkforce GPS logger,” for three weeks. The 
device recorded date, time, latitude, longitude, elevation, and speed every five seconds. Vol-
unteers were requested to carry the device when they started the day and continue to the end 
of the day. In total, around five million positional recordings were recorded, and over 6% of 
the dataset was labelled with the correct used transportation modes. Processing of cleaning 
outliers, missing values, and signal errors were conducted to prepare the dataset. All point 
data with a speed of more than 300 km per hour were removed from the dataset. Also, all 
the points that had greater timestamps than the next point were considered signal errors 
and were removed. If the device was stable for more than 20 min, all positional recordings 
before the last timestamp were regarded as one trip. In total, 11,539 trips were extracted 
during the time period.

Fig. 1 The framework of the proposed method
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A trip may include different types of transportation modes and can be divided into a 
single segment, where each segment indicates a specific transportation mode. For example, 
a trip may start with a bus and end with walking. In this paper, we employ the Pruned Exact 
Linear Time (PELT) algorithm to effectively identify change points within a dataset where 
statistical properties change. The PELT method is rooted in an algorithm initially proposed 
by Jackson et al. (2005)It incorporates a key pruning step within the dynamic programming 
framework, as outlined by Frappart and Bourrel (2018). PELT stands out for its ability to 
accurately pinpoint change points and segment datasets with a higher level of precision 
compared to traditional binary segmentation methods, as demonstrated by Killick et al. 
(2012). The PELT method achieves high precision by optimizing the partitioning process 
and integrating it with a pruning technique, resulting in an exact and computationally effi-
cient solution denoted as F(n). F(n) exhibits linear computational complexity with respect 
to the number of data points, as expressed in Eq. 1.

 
F (n) = min

τm
{

i=m+1∑

i=1

[C( yτi−1+1 : yτi) + β]}  (1)

 
F (n) = min

τm
{

i=m+1∑

i=1

[C( yτi−1+1 : yτi) + β] + C(yτm+1 : yn)}  (2)

 
F (n) = min

τm
{F (τm) + C(yτm+1 : yn) + β}. (3)

Fig. 2 (a, b, c, d). location of Borlänge city in Sweden (a), The public transportation network in study area 
(b), The raw GPS tracking data (c), The GPS tracking data in the study area
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In Eq. 1, F (n) denotes the minimization for data y1:n, n is the number of point data, 𝛽 is the 
penalty to control the overfitting, and 𝐶 is a cost function for the 𝑖𝑡ℎ segment. 𝑚 is all number 
of changes in their positions, 𝜏.

Since PELT aims to find the optimal number of change points, the model needs to calcu-
late the optimal number of breakpoints or optimal segmentation until that changes the mini-
mization of 𝐹(𝑛). This iterative nature can lead to an inner minimization, which is shown by 
𝐹(𝜏𝑚) in Eqs. 2 and 3.

Data feature computation

Features such as time, date, latitude, longitude, speed elevation of each positional recording 
can be directly extracted from GPS devices. However, in order to detect the transportation 
modes, more features are needed. Therefore, for each segment, the following features are 
calculated: the distance between two points, total distance, bearing rate, turning change rate, 
the time difference between two points, total duration, and features related to speed includ-
ing average speed, minimum and maximum speed, acceleration, and Jerk. The features 
selected for our transportation mode detection model were chosen based on their established 
relevance in capturing essential aspects of movement patterns, as emphasized in key studies 
(Dabiri et al. 2020; Dutta and Patra 2023; Li et al. 2021; Markos and Yu 2020; Sadeghian 
et al. 2022). These studies collectively emphasized the significance of features such as dis-
tance metrics, bearing rate, turning change rate, time-related features, and speed-related 
metrics in accurately characterizing transportation modes. The inclusion of these features is 
grounded in a robust foundation of empirical evidence and established practices, ensuring 
the effectiveness of our model in discerning diverse transportation modes. In order to pro-
vide a comprehensive overview of the input data features used in our transportation mode 
detection model, we have included a summary table (Table 2) that outlines each feature’s 
name, data type, and description.

The Vincenty’s formula (Vincenty, 1975) is used for computing the distance between two 
points (P1, P2), the time difference between P1 and P2 is noted as, the acceleration, average 
speed, Jerk, and turning rate are calculated according to Eqs. 4, 5, 6, 7, 8 and 9:

 
Ap1 =

Sp2 − Sp1

∆t
 (4)

 
Sp1 =

V incenty(P1, P2)
∆t

 (5)

 
AvgSp =

∑n

i=0

Spi

n
 (6)

 
Ji =

ai+1 − ai

∆ti
1 ≤ i ≤ N ; JN = 0 (7)

 

V incenty (latilongilati+1longi)
V incenty (latilongilatilongi+1)

 (8)
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TRi =

bi+1 − bi

∆ti
1 ≤ i ≤ N ; TR1 = TRN = 0 (9)

Where Ap and AvgSp represent an acceleration of the point and the average speed of the 
points in each segment, n means the number of positional recordings in each segment, and 
the Jerk (the rate of change in acceleration) and turning rate values, respectively.

The bearing rate is calculated according to Eq. 10 to 12, by using two sequential posi-
tional recordings information:

 y = sine [P2 (long) − P1 (long)] ∗ cosine [P2 (lat)] (10)

 x = cosine [P1 (lat) ]∗[ P2 (lat)] − sine [P1 (lat)] ∗ cosine [P2 (lat)] ∗ cosine [P2 (long) − P1 (long)] (11)

 Bearing(P1) = arctan(y, x)  (12)

Another essential feature is a segment duration that is calculated based on the time dif-
ference of the first and the endpoint of the segment. Moreover, the distance between two 
sequential positional recordings and the total distance of each segment is calculated accord-
ing to the following equations:

Variable Name Type Description
Speed Float Speed of the GPS points in km 

per hour.
Average Speed Float Average speed within a segment in 

km per hour.
Minimum Speed Float Minimum speed within a segment 

in km per hour.
Maximum Speed Float Maximum speed within a segment 

in km per hour.
Acceleration Float Rate of change of speed (m

s2 )
Jerk Float Rate of change of acceleration (m

s3 )
Distance Float Distance between two consecutive 

GPS points
Total Distance Float Total distance covered within a 

segment in meters.
Bearing Rate Float Rate of change in bearing (direc-

tion) between points.
Turning Change 
Rate

Float Rate of change in turning angle 
between points.

Time Difference Float Time duration between consecu-
tive GPS data points in seconds.

Total Duration Float Total time duration of a segment 
in seconds.

GPS Coordinates Dummy Latitude and longitude coordinates
Time Stamp Dummy Time information for each GPS 

point
Mode Label Dummy Ground truth label for transporta-

tion mode (e.g., Walk, Run, Bike, 
Car, Bus)

Table 2 Summary of input data 
features for transportation mode 
detection model 
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 D(p1,p2) = cosine [sine [P1 (lat)] *sine [P2 (lat)] + cosine [P2 (lat)] *cosine [P2 (long) − P1 (long)]] *
180
π

*60 (13)

 
DT =

n∑

i=1

Di  (14)

In addition to the extracted and computed features from the raw GPS tracking dataset, we 
incorporate GIS information layers including road and rail networks, bus and train sta-
tions to enable enhanced dataset visualization. Specifically, these GIS layers provide a more 
comprehensive perspective on train and bus segments. After obtaining the clean and vali-
dated GPS dataset, the dataset was used for feeding into the LSTM Autoencoder, which is 
described in detail in the next subsection.

Semi-supervised learning with stacking LSTM

In most studies, the conventional approach involves the extraction or computation of vari-
ous features, which are then directly utilized for transportation mode detection. This method 
proves effective when trajectory data are entirely labelled with corresponding transporta-
tion mode information, facilitating straightforward network training. The input data for the 
model is reshaped to incorporate time step information. This restructuring is crucial for 
extracting temporal correlations from the data, a vital aspect in travel mode identification. 
By mapping the input data into an R-dimensional time series using LSTM, the model effec-
tively captures these temporal dynamics, which are essential for improving the accuracy of 
the model in identifying travel modes. However, it often remains unclear which of these 
extracted features holds the utmost effectiveness in discerning transportation modes. Never-
theless, real-world scenarios frequently involve a majority of unlabelled GPS data, render-
ing the use of a fully labelled dataset impractical.

To address this challenge, a deep learning algorithm can be employed to amalgamate and 
distil pertinent information, ultimately reaching a conclusive decision. In this context, we 
employ a straightforward yet robust solution: a simple LSTM autoencoder. This approach 
allows us to extract latent information from the computed features. While not explicitly per-
forming feature selection, this architecture implicitly learns feature representations, empha-
sizing those that are most salient for the task at hand. Post-training feature importance or 
relevance analysis can further substantiate our conclusions regarding feature effectiveness.

LSTM autoencoder

LSTM was proposed by Hochreiter and Schmidhuber (1997), and is one of the most com-
monly used data mining methods with a modern architecture of neural networks. While 
standard neural networks attempt temporal correlation within the training data, the LSTM 
algorithm learns from such correlation to extract latent information, due to the special 
design of states that propagate over time. The LSTM autoencoder is an implementation of 
an autoencoder that approves time series sequential data and uses LSTM architecture in its 
encoder and decoder. The encoder LSTM reads the input sequence, and the model stores the 
latent information as a vector, which represents the entire original dataset. Figure 3 repre-
sents the architecture of an LSTM autoencoder and the data flow within it.
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Single classifier

In order to regenerate the input data, the vector of hidden information can be passed as the 
input to the decoder part of the LSTM autoencoder. After extracting the latent information, 
it needs to build a fully connected neural network that uses the inputs and detects the trans-
portation modes. The fully connected neural network can be trained by using categorical 
cross-entropy as a loss function, since the purpose of the model is multiclass classification. 
Moreover, in order to optimize the model, an Adam optimizer is used. Figure 4 presents 
the architecture of the model. Figure 4 offers an illustrative overview of our model’s struc-
tural components, showcasing how latent information is leveraged and transformed to make 
accurate predictions regarding transportation modes.

The stack network exploits the latent information with different hyperparameter configu-
rations. Three fully connected layers are employed, which take latent information as input 
for the network. 35 and 18 neurons are employed in the first two ReLU activated layers. 
In the last layer with 𝑋 number of neurons, the softmax activation function is employed to 
identify the travel modes, where 𝑋 is the number of transportation modes.

Results

For analyzing the data, the Python 3.7 programming language was used. The LSTM autoen-
coder architectures were implemented in Keras, a deep learning library in Python, utilizing 
the TensorFlow backend with the support of only CPU. 80% of the whole labeled data was 
randomly selected as training dataset while the rest was used as testing data. The perfor-
mance evaluation of an LSTM autoencoder model needs to be done only on the test dataset 
that does not affect the training process.

Fig. 3 The architecture of a 
simple LSTM autoencoder
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Dataset processing

In Sect. 4.1, we provided insights into our data collection process. The raw GPS track-
ing data was collected from a subset of our volunteer group, which consisted of a total of 
91 individuals, over a span of one year. During this data collection phase, 15 participants 
contributed to the labeling process. We employed a user-based approach, where partici-
pants were asked to manually record the mode of transportation for each segment of their 
trajectory. In this dataset, each trajectory was represented as a sequence of GPS positional 
recordings. In total, we gathered 8,226 segments that were labeled by these 15 participants. 
These labels indicated the transportation mode used for each corresponding trajectory seg-
ment. Specifically, participants assigned one of five following transportation modes: walk, 
bike, bus, car, or train to their recorded segments. To further process and analyze the raw 
GPS data, we applied the pruned exact linear time (PELT) algorithm to detect change points 
in trips based on speed and bearing rates (Killick et al. 2012). The PELT algorithm is used 
for changepoint detection in GPS tracking data. It efficiently identifies points where there’s 
a significant change in speed and bearing rates, helping segment trajectories into different 
modes of transportation (walk, bike, bus, car, or train). It has a linear time complexity, mak-
ing it computationally efficient for large datasets.

This resulted in a total of 612,088 segmented data points. After segmenting the data, 
we calculated all features listed in Table 2 for each positional recording as was described 
in Sect. 3.1. Table 3 below provides an overview of the total number of labeled segments 

Fig. 4 The architecture of the proposed model for detecting transportation modes

 

1 3



Transportation

and point data for each type of transportation mode, offering insight into the distribution of 
ground truth data used for our analysis.

LSTM autoencoder performance

The LSTM Autoencoder with the architecture shown in Fig. 3 is trained with all labeled and 
unlabeled point data. Figure 5 shows the changes in the loss over 200 iterations, and the 
LSTM autoencoder algorithm predicts the input values with less than 0.1 error. Therefore, 
it can be concluded that the obtained latent information can be reliable and can function as 
a good representative of the dataset as the input values.

A single deep neural network with three hidden layers and two input and output layers 
is employed to identify the transportation modes. In order to avoid biased results, K-fold 
cross-validation with five numbers of splits and only one iteration is applied. Table 4 shows 
the model performance with a different portion of labeled data.

Table 4 Performance comparison of with varying amounts of labeled data
Portion (%) Fold 1 (%) Fold 2 (%) Fold 3 (%) Fold 4 (%) Fold 5 (%) Accuracy (%)
10 89.04 89.78 89.56 89.78 89.18 89.47
20 91.87 91.98 91.76 89.94 91.15 91.34
50 93.38 92.30 92.15 93.33 93.60 92.95
100 94.06 94.06 93.81 93.72 94.03 93.94

Fig. 5 Changes in loss function 
over numbers of iteration
 

Transporta-
tion mode

Number of 
points

Number of 
segments

Maximum 
speed 
(m/s)

Maximum
accelera-
tion (m/
s2)

Walk 15,269 2,839 19 1.6
Bike 10,850 1,351 49 5.8
Bus 11,624 874 110 5
Car 12,636 1,491 129 7.8
Train 15,736 1,671 136 7.2

Table 3 Number of samples, 
maximum speed, and accel-
eration associated with each 
transportation mode
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Table 4 shows the overall model performance using different portions of labeled data. As 
can be seen, the performance of the model with only using 10% of labeled data is over 89%. 
By increasing the portion labeled, the performance of the model increased significantly. 
The achieved results reveal that the proposed model can identify the correct transportation 
modes with a high level of accuracy. Moreover, the results proven that the proposed model 
could work well with over-fitting issues prominently.

Table 5 shows the model accuracy concerning using different proportions of the labeled 
dataset. The table shows that with using only 10% of the labeled dataset, the model accuracy 
is 89.47%, while by increasing the use of the labeled dataset (20%), the accuracy values 
reach 91.34%. Moreover, 50% and 100% of partition of a labeled dataset are used, and the 
accuracy values reach 92.95% and 93.94%, respectively. The result indicates that by only 
using 20% of the labeled dataset, the proposed model can achieve over 91% accuracy in 
detecting the correct transportation modes. Moreover, the results confirmed that the LSTM 
Autoencoder does not prominently suffer from over-fitting issues. The loss and accuracy of 
training the deep neural network on a totally full labeled dataset over 100 iterations for each 
fold were examined. The loss value at the end of the 100 iterations per fold was below 0.2, 
which showed how the model overperformed in predicting the five transportation modes. 
Table 5 shows how well the proposed algorithm performs in identifying a specific transpor-
tation mode by using different portions of the labeled dataset.

The table shows when the training dataset is 10% of the labeled dataset, the performance 
of the proposed model is significant, almost 90%, in detecting the correct modes. The model 
performed well in detecting walk, bike, and train modes with a precision level of above 
90%. However, the model performance in detecting car and bus modes using a 10% labeled 
dataset, compared to other modes, is also acceptable (over 80%). By increasing the amount 
of labeled data (20%), the performance of the proposed model is increased to 91.34%. The 
precision value for walk mode was approximately the same; however, for other modes, the 
values improved significantly.

Table 5 Confusion matrix of the proposed model with using 10% and 20% of labeled data
10% of labeled data Predicted mode

Bike Bus Car Train Walk Sum Recall (%)
Actual mode Bike 984 36 28 11 0 1,059 92.92

Bus 67 969 137 22 0 1,195 81.09
Car 26 171 1,026 68 1 1,292 79.41
Train 24 22 81 1,427 0 1,554 91.83
Walk 0 0 2 0 1,509 1,511 99.87
Sum 1,101 1,198 1,274 1,528 1,510 6,611 -
Precision (%) 89.37 80.88 80.53 93.39 99.93 - -

20% of labeled data Predicted mode
Bike Bus Car Train Walk Sum Recall (%)

Actual mode Bike 2,075 66 33 24 0 2,198 94.40
Bus 122 1,860 239 20 0 2,241 83.00
Car 31 305 2,168 84 2 2,590 83.71
Train 21 32 164 2,896 0 3,113 93.03
Walk 0 0 2 0 3,079 3,081 99.94
Sum 2,249 2,263 2,606 3,024 3,081 13,223 -
Precision (%) 92.26 82.19 83.19 95.77 99.94 - -
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Table 6 shows the confusion matrix of the proposed model using 50% and 100% of 
labeled data. As can be seen, the precision and recall values with using 100% of labeled data 
are increased, compared to using 50% labeled data. The precision values are improved by 
around 2% for bus and car modes. Nevertheless, the obtained precision for walk, bike, and 
train are not significant in comparison to using only 50% labeled data because it performs 
as well if computing time is considered.

The overall results show that the walk mode is detected more accurately by the model 
since it has a larger amount of point data in the training dataset. However, bus and car modes 
are easily misclassified by the model since these two modes have the same behavior in the 
motion, speed, and road network. Moreover, the model accuracy in detecting the train mode 
compared to the other motorized modes was higher due to more labeled data than bus, and 
car modes. The bus mode is also classified as a bike mode, due to the low speed of the bus 
in city traffic, and the acceleration and turning rate when the bus is close to traffic lights. 
There is also misclassification between car and train modes because of some similarities 
in acceleration and deceleration when the trains arrive at train stations. Moreover, the rail 
network in the study area has some similarities with the road network.

Comparison with other studies

To demonstrate the superiority of our proposed model, we conducted a comparative analysis 
of its performance against other studies that have utilized deep learning models with GPS 
tracking datasets for transportation mode detection.

In this section, we focus on a series of baseline studies and compare their accuracy level 
of detection on different types of modes, including semi-supervised convolutional Auto-
encoder (SECA)(Dabiri et al. 2019), Semi-two-steps (Dabiri et al. 2019), Semi-pseudo-
label(Dabiri et al. 2019), Generative Adversarial Network (GAN) (Yazdizadeh et al. 2021), 
LSTM (Asci and Guvensan 2019), and semi-supervised deep ensemble learning algorithm 
(Yu 2020). Additionally, some traditional machine learning algorithms studies are also used 

Table 6 Confusion matrix of the proposed model with using 50% and 100% of labeled data
50% of labeled data Predicted mode

Bike Bus Car Train Walk Sum Recall (%)
Actual mode Bike 5,201 122 68 47 0 5,438 95.64

Bus 211 5,074 535 45 0 5,865 86.51
Car 62 653 5,413 164 1 6,293 86.02
Train 34 67 315 7,461 1 7,878 94.71
Walk 0 0 5 0 7,578 7,583 99.93
Sum 5,508 5,916 6,336 7,717 7,580 33,057 -
Precision (%) 94.43 85.77 85.43 96.68 99.97 - -

100% of labeled data Predicted mode
Bike Bus Car Train Walk Sum Recall (%)

Actual mode Bike 10,508 158 132 52 0 10,850 96.85
Bus 368 10,444 764 48 0 11,624 89.85
Car 159 1,260 10,858 356 3 12,636 85.93
Train 53 93 552 15,035 3 15,736 95.55
Walk 0 0 7 0 15,262 15,269 99.95
Sum 11,088 11,955 12,313 15,491 15,268 66,115 -
Precision (%) 94.77 87.36 88.18 97.06 99.96 - -
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in the comparison, including decision tree algorithms, K- nearest neighbor, super vector 
machine, random trees, multi-layer perceptron (Dabiri and Heaslip 2018). The results of the 
performance of the models are shown and summarized in Table 7. In this table, the value 
is developed by our implementations shown as “proposed,” and the performance of other 
methods are also presented with reference.

Based on the table, it is evident that the proposed model in this study consistently outper-
forms other semi-supervised transportation mode detection studies across different labelled 
data percentages (10%, 20%, 50%, and 100%). Notably, even with only 10% labelled data, 
our model achieves an accuracy rate of 89.5%, highlighting its robustness and efficiency. 
Comparing our model to the second-best performing study, Deep ensemble learning by 
Yu (2020), reveals a significant difference in complexity. While Yu (2020) employed six 
stacked LSTM layers and four different deep neural networks, our approach utilizes a 
simpler LSTM autoencoder with four layers (two for encoding and two for decoding) in 
conjunction with a deep neural network featuring three hidden layers. Despite its reduced 
complexity, our method achieves superior accuracy results. This underscores the effective-
ness of our approach in achieving high accuracy with limited labelled data, making a fully 
labelled dataset unnecessary for achieving exceptional performance.

While all algorithms demonstrate similar performance in transportation mode detection, 
there are several reasons to consider our approach. Firstly, our algorithm is designed to be 
computationally efficient, making it suitable for real-time or resource-constrained applica-
tions. In contrast, deep ensemble learning often involves complex models with higher com-
putational costs. Secondly, our model achieves comparable accuracy while using a smaller 
amount of labelled data. This is especially valuable when labelled data is scarce or expensive 
to acquire. Additionally, our algorithm’s architecture is more streamlined and may require 
less fine-tuning compared to the ensemble approach. Lastly, our model’s interpretability 
and feature extraction capabilities can provide valuable insights into which features are 
most influential in mode detection. These considerations make our algorithm a compelling 
choice, especially when balancing performance, efficiency, and interpretability.

Table 7 Performance comparison among transportation mode detection models under varying percentages 
of labeled data
Percent of labeled data 10% labeled 

data
20% labeled 
data

50% labeled 
data

100% labeled data

Models Accuracy (%
Proposed model 89.5 91.3 92.9 93.9
SECA (Dabiri et al. 2019) 72.9 74.1 77.2 78.2
Semi-two-step (Dabiri et al. 2019) 64.1 66.2 68.8 70.4
Semi-pseudo-label (Dabiri et al. 2019) 68.9 70.3 71.2 75.4
GAN (Yazdizadeh et al. 2021) 78.4 79.9 81.9 82.6
KNN (Dabiri et al. 2019) 61.1 61.8 62.9 63.4
SVM (Dabiri et al. 2019) 61.7 62.1 63.1 63.5
DT (Dabiri et al. 2019) 77.1 78.2 78.8 79.4
MLP (Dabiri et al. 2019) 48.4 49.2 52.1 54.9
CNN (Dabiri et al. 2019) 86.8 87.2 87.9 88.1
RF (Yu 2020) 83.9 84.3 85.8 87.7
LSTM (Asci and Guvensan 2019) 78.9 79.1 80.5 81.2
Deep ensemble learning (Yu 2020) 88.7 89.4 90.1 91.2
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Conclusions

In this paper, a novel transportation mode detection model based on semi-supervised deep 
learning is proposed. The model is based on a combination of a long short-term memory 
(LSTM) Autoencoder and a deep neural network algorithm. The deep neural network can 
extract the latent information from the applied LSTM autoencoder to generate the label for 
the unlabeled dataset, based on the existing information of GPS labeled data. This combina-
tion does not require fully labelling of the dataset and can show which extracted features 
are most effective in detecting transportation modes. This approach can use the unlabeled 
human mobility GPS trajectories to improve system performance. The proposed model is 
applied to a large volume of GPS tracking dataset for detecting five transportation modes. 
The results show that it can detect the correct transportation modes effectively and with a 
high accuracy of 93.94%. However, note that the proposed model in this paper used only 
6% of labeled data. This approach offers several advantages, including the ability to make 
accurate predictions without the need for fully labeled datasets and the identification of 
key features for transportation mode detection. To assess the performance of the proposed 
model, two aspects were considered. First, the accuracy of the model was evaluated by 
using different portions of the labeled data. Second, a comparison analysis with other stud-
ies applied semi-supervised learning was conducted. The result showed that the proposed 
model performed well in predicting the correct transportation modes for unlabeled data and 
outperformed other semi-supervised learning models.

The high accuracy achieved in our study can indeed be attributed, in part, to the homo-
geneous nature of our dataset, where each participant contributed three weeks of data. This 
extended data collection period per person allowed our algorithm to learn individual trans-
portation behaviours thoroughly, thereby enhancing its accuracy in mode detection. We 
acknowledge that in real-world scenarios, data collection periods may vary widely, which 
can impact the model accuracy. However, our approach is designed to be able to adapt and 
fit for diverse data volume and less homogeneous datasets, which makes it a versatile solu-
tion for various applications. While the homogeneity of our sample played a role in achiev-
ing high accuracy, the ability that the model can adapt and can be generalized under different 
scenarios remains a notable strength.

The proposed algorithm is not solely reliant on labelled data; it is also built to work with 
unlabelled trajectory data from sources like smartphones and drones. Its versatility means it 
provides better accuracy when labels are available but remains useful with unlabelled data 
through its semi-supervised approach. While our dataset, consisting of 91 participants, may 
have limitations in broader applications, we believe our approach can adapt to various real-
world scenarios, making it practical beyond the scope of our dataset.

However, it’s important to acknowledge certain limitations associated with our research 
and the data used. First, our data primarily comes from GPS tracking data collected in a 
specific location (Borlänge, Sweden) over a limited timeframe. While our model has dem-
onstrated high accuracy, further investigation is needed to determine how well it can be 
generalized under diverse geographic regions and different time periods. Additionally, the 
accuracy of our model depends on the initial labels provided by the 10 participants. Human 
labeling can introduce errors, and the impact of labeling inaccuracies on our model’s perfor-
mance should be considered.
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The practical implications of our analysis are still noteworthy. Firstly, our model’s abil-
ity to achieve accurate results with minimal labeled data has significant implications for 
reducing the cost and time associated with data labeling in transportation mode detection 
applications. This can streamline the development of transportation-related systems and 
services. Secondly, by effectively utilizing unlabeled GPS data, our model enhances system 
performance in applications such as urban planning, traffic management, and environmental 
monitoring. Accurate transportation mode detection is crucial for making informed deci-
sions in these domains. Lastly, while our research was conducted in a specific context, the 
model’s architecture and approach can be applied to various locations and datasets, poten-
tially benefiting transportation-related studies worldwide.

In conclusion, our research not only offers a promising approach to transportation mode 
detection but also highlights the need for further investigation into the model’s general-
ization potential, labeling accuracy, and applicability to diverse datasets. The practical 
implications of our work also extend to more efficient data labeling and improved system 
performance in transportation-related applications, showcasing the practical relevance of 
our findings.
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