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Classification with NormalBoost

Erfan Davami and Hasan Fleyeh

Abstract. This paper presents a new boosting algorithm called NormalBoost which is ca-
pable of classifying a multi-dimensional binary class dataset. It adaptively combines sev-
eral weak classifiers to form a strong classifier. Unlike many boosting algorithms which
have high computation and memory complexities, NormalBoost is capable of classifica-
tion with low complexity. Since NormalBoost assumes the dataset to be continuous, it is
also noise resistant because it only deals with the means and standard deviations of each
dimension. Experiments conducted to evaluate its performance shows that NormalBoost
performs almost the same as AdaBoost in the classification rate. However, NormalBoost
performs 189 times faster than AdaBoost and employs a very little amount of memory
when a dataset of 2 million samples with 50 dimensions is invoked.
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1 Introduction

Boosting is a machine learning meta-algorithm to perform supervised learning
which combines several weak learners to create a strong learner. A weak learner
is a classifier which can classify samples with success rates a slightly more than
randomly guessing the sample’s class. A strong learner is a classifier that can clas-
sify data with rather high rates which means much better rates than what can be
achieved by weak learners. It works based on a very basic principle “Pay more
attention to the misclassified samples and next time try to classify them correctly”.
The original boosting algorithms were proposed by Schapire [1] and Freund [2].
The proposed algorithms could not take full advantage of the weak learners be-
cause they were not adaptive.

Boosting is unlimited to the algorithm constraints such as the number of training
samples, the dimension of each sample, and the number of training rounds. After
each round of learning, the weights (importance) of all the samples are updated
based on the classification error of the weak learner of that round. The samples
which are misclassified gain weight and samples which are correctly classified
lose weight. Some boosting algorithms such as boost by majority [2] and Brown-
Boost [3] decrease the weight of misclassified samples. Thus, future weak learners
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pay more attention to the samples which previous weak learners have misclassi-
fied.

The main differences between the different boosting algorithms are their hy-
potheses and the way the sample’s weights are updated. AdaBoost [4] is a very
popular boosting algorithm and perhaps the most significant; however, there are
many other recent algorithms such as LPBoost [5], TotalBoost [6],
BrownBoost [3], MadaBoost [7], and LogitBoost [8]. Most of these algorithms
try to overcome the sensitivity of AdaBoost to noise.

Much research has been done on boosting algorithms but all of them share a
number of drawbacks such as high computational cost and heavy memory con-
sumption. To overcome these drawbacks, a new boost algorithm called Normal-
Boost is proposed in this paper. NormalBoost is designed in such a way that it
could overcome the speed and memory complexity problems of common boost
algorithms; in addition it is robust towards classifying noisy datasets.

NormalBoost assumes that there is a huge data set which has normal distribution
in each of its dimensions. Using rather complex mathematics, the classification er-
ror of a weak classifier in any given point of the dimension scope can be estimated.
The average weights of samples within a specific range can also be approximately
determined and thus the weights could be altered using symbolic mathematics.

The reminder of the paper is organised as follows. In the next section, the
relevant work is introduced. The AdaBoost is presented in Section 3. A full de-
scription of NormalBoost is given in Section 4. The experiments and results based
on the proposed method are given in Section 5 and in Section 6, the conclusions
are presented.

2 Relevant Work

The original Boosting methods were developed by Schapire and Freund [1, 2].
AdaBoost was the result of further improvements on the former boosting algo-
rithms [4]. Adaptability is achieved in the way that current weak classifiers would
be able to focus more on the data which is misclassified by the previous weak
classifiers.

Domingo and Watanabe [7] suggested a boost algorithm called MadaBoost in
which they modified AdaBoost to make it able to be used in filtering framework
boosting and to be resistant to noise. LogitBoost was presented by Friedman et
al. [8] which is very similar to AdaBoost except that it uses the logistic regression
cost function. It can indeed be considered as a form of convex optimisation.

Freund [3] developed an adaptive version of ‘Boost by Majority’ which is called
Brownboost. Since AdaBoost focuses on frequently misclassified data it does not
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appear to work well on noisy datasets [9]. Furthermore, Brownboost stops giving
priority to frequently misclassified samples and allows prioritising samples which
have been correctly classified numerous times. Brownboost gives us the option to
set a certain amount of tolerance for the classification error in the dataset.

Demiriz et al. [5] proposed LPBoost in which a strong classifier starts with an
empty set of weak learners, a weak learner is added iteratively and the weights
are updated until no weak learner remains. This property is known as the Totally-
Corrective property. Boosting methods such as AdaBoost do not have this feature
thus converge is slower.

SoftBoost [10] was designed to be suitable for datasets containing samples
which are binary labelled and cannot necessarily be separable by convex combi-
nations of base hypotheses. By capping the distribution of samples the algorithm
gains robustness and reaches a convergence based on a logarithmic growth func-
tion.

FilterBoost [11] is based on a technique of logistic regression [12] and uses an
oracle to draw samples instead of using a fixed training set which makes it efficient
for large datasets. The algorithm is more resistant to overfitting and noise.

3 AdaBoost

A weak learner, which is illustrated in Figure 1, finds a separation boundary be-
tween negative and positive classes based on finding the location of the boundary
th in the suitable dimension D and the location of the positive class with respect
to the negative one lp 2 ¹�1;C1º. Since this weak learner fails in most cases to
separate the two classes, AdaBoost combines a number of weak learners to form a
strong learner in order to achieve better separation between classes.

Let X be a finite set of training which is denoted by:

X D ¹.xi ; yi /jxi 2 RT ; yi 2 ¹C1;�1ºº; for i D 1; 2; : : : ; N; (1)

where xi is i -th training data, yi is its corresponding target label, N is the number
of training samples, and T is the space of the data set (number of features).

For any training round k D 1; : : : ; K, in each dimension d D 1; : : : ; T , a weak
learner is described by four parameters [thd , lpd , d , ˛d ]. The error generated by
this weak learner in the current dimension is given by ed as follows:

ed D

PN
iD1wi � abs.y.i; t/ � hi .xi //

PN
iD1wi

: (2)
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Figure 1. A weak learner (left) versus a strong learner (right).

The quality of classification in this dimension is measured by a parameter called
˛d , which is a positive number in the range Œ0;1� [5].

˛d D
1

2
� log

1 � ed

ed
> 0: (3)

The best weak learner among all weak learners in all dimensions is the one which
has the least classification error ek . This weak learner is described by [thk , lpk ,
Dk , ˛k], where Dk is the dimension in which the classifier is defined

ek D min.ed /
T
dD1: (4)

In the beginning of the training, each sample xi has a weight wi which is initially
wi D 1. The weak learner classification result on sample xi is given by hi .xi / 2
¹C1;�1º.

h.xi / D

´
lpk; xi;Dk < thk;

�1 � lpk; otherwise:
(5)

The weight of sample xi is updated by the following equations:

wkC1i D wki � e
�˛k �yi �hi .xi /: (6)

Finally the strong classifier is updated by the following equation:

Hx D sign

� KX

kD1

˛k � hk.x/

�

: (7)
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The algorithm is based on K rounds where samples in round one are given an
equal weight (importance). In order to focus more on the misclassified samples in
the next rounds, the weights of misclassified samples are increased based on the
minimum classification error of each round.

4 NormalBoost

NormalBoost is a type of classification algorithm which can be employed to
achieve binary classification. It is applied on datasets which consist of two classes
which are called positive and negative. Any dataset processed by the NormalBoost
should have a normal distribution. Since NormalBoost assumes the dataset to be
continuous, having a large number of samples is recommended to simulate the
continuity of the data.

4.1 Computing the Best Weak Classifier

In order to separate the dataset into two different classes, NormalBoost finds the
best linear separations in all dimensions and merges them to make a single nonlin-
ear separator. This process starts by calculating the mean and standard deviation of
the positive class .�p;d ; �p;d / and the negative class .�n;d ; �n;d / in each dimen-
sion, where d 2 ¹1; : : : ; T º and T represents the dimensionality of the problem.

Without loss of generality, a two dimensional dataset will be exploited for bet-
ter clarity of the discussion. Figure 2 illustrates an example of two normally dis-
tributed datasets along two dimensions which fit the requirements of NormalBoost.
The curves on the bottom and left of the Figure depict this distribution.

The weight representation in NormalBoost is based on a set of weight points wp
and weight values wv in each dimension and class. Weight points are specific coor-
dinates on the corresponding dimension in which the weights have specific values.
Since there are positive and negative classes in each dimension, the weighs are
represented by their positive and negative weight points and values ¹wpC

d
;wvC

d
º

and ¹wp�
d
;wv�

d
º, where d 2 ¹1; : : : ; T º.

In the beginning of the boosting, the weights of the positive and negative classes
in each dimension are initialised as follows:

wpC D Œ�1;1�; wvC D Œ1� (8)

and

wp� D Œ�1;1�; wv� D Œ1�; (9)
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Figure 2. Probability distribution of dimensions.

which means that for each class, all the potential existing weights from �1 to
C1 will have a value of 1. This means that the importance of the data in each
dimension is equal.

In order to calculate the best weak learner in each dimension of the problem,
it is necessary to find the location of a boundary th in each dimension and the
location of the positive class with respect to the negative one lp as depicted in
Figure 3. Following this discussion, the value of lp is specified by comparing
the means of the two classes in each dimension. When �n;d < �p;d then the
positive class is located to the right with respect to the negative one, and therefore
lp D �1, otherwise lp D C1. When �n;d D �p;d , then a very bad weak learner
will be generated which will be rejected by the other weak learners of the other
dimensions. However, by default the value of lp is set to C1.

The threshold th is defined as the position of a line which separates the two
classes provided that this line maximises the classification rate (minimises the
classification error). Figure 3 illustrates the idea of the threshold th.

In a certain dimension d , the classification error of the weak learner is given as
follows:

Classification Error D
FPAC FNA

APCC ANC
; (10)
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Figure 3. The threshold th of a weak learner and the initialisation of weights in
NormalBoost.

where FPA is the area of the false positive, FNA is the area of the false negative,
APC is the area under the positive curve and ANC is the area under the nega-
tive curve. The numerator of Equation 10 represents the misclassified area while
the denominator represents the summation of the two areas under the two curves.
Consider x as any position on any dimension as shown in Figure 4, when lp D 1,
FPA represents the area under the negative curve between �1 and x while FNA
represents the area under the positive curve between x and C1. When lp D �1,
FPA represents the area under the negative curve between �1 and x while FNA
represents the area under the positive curve between x andC1.
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Figure 4. Error regions.

Since a Gaussian function, which is represented by Equation 11, is invoked here

p.x; �; �/ D
1

p
2��2

e
� .x��/

2

2�2 ; (11)

APC D
Z 1

�1

p.x; �p;d ; �p;d /dx; (12)

ANC D
Z 1

�1

p.x; �n;d ; �n;d /dx: (13)
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The misclassified area is then given by

misclassified Area.x/

D

´R x
�1 p.t; �n;d ; �n;d /dt C

R1
x p.t; �p;d ; �p;d /dt; lp D 1;

R x
�1 p.t; �p;d ; �p;d /dt C

R1
x p.t; �n;d ; �n;d /dt; lp D �1

(14)

and the misclassification error generated by choosing x as a threshold is then given
by:

Errord .x/ D
1

APCC ANC
�misclassified Area.x/: (15)

The optimum value of th is calculated by finding the first derivative of Equation 15
with respect to x and calculating its root. Equation 16 shows the optimum thresh-
old th.

th D �p;d � �
2
n;d � �n;d � �

2
p;d C �p;d � �n;d (16)

�

q
�2�p;d � �n;d � 2�

2
p;d
� ln

��n;d
�p;d

�
C 2�2

n;d
� ln

��n;d
�p;d

�
C �2

p;d
C �2

n;d

�2
n;d
� �2

p;d

:

Computation of Equation 16 is only based on the presence of four parameters
which are �p;d , �p;d , �n;d and �n;d , thus it can be calculated very fast.

In analogy to AdaBoost, classification quality ˛d can be calculated from Equa-
tion 15 as follows

˛d D
1

2
� log

1 � Errord .x/

Errord .x/
> 0 (17)

and thus the parameters of the weak learner in dimension d is described by [thd ,
lpd , d , ˛d ]. The weak classifier with the highest ˛ in all dimensions will be
selected as the best weak learner in this specific round of training. This weak
learner is then specified by [thD;k , lpD;k , Dk , ˛D;k], where D is the dimension in
which the best weak learner is located and k 2 ¹1; : : : ; Kº is the specific round of
training.

4.2 Updating the Weights

The weights of each dimension d of the problem in a certain round k are denoted
by ¹wpC

d;k
;wvC

d;k
º and ¹wp�

d;k
;wv�

d;k
º, where d 2 ¹1; : : : ; T º and k 2 ¹1; : : : ; Kº.
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Figure 5. Updated weights of the positive and negative classes in Dimension D.

Based on Equations 8 and 9, the graphical representation of the weights of di-
mension d when k D 1 is illustrated in Figure 5. As indicated in this Figure, in
between all weight points the weight values equal 1.

In a specific round k, the weights of dimension D is updated in a way that the
weight of the correctly classified area is decreased and the weight of the misclas-
sified area is increased. This is done in order to force NormalBoost to pay more
attention to misclassified areas in the incoming rounds. For any position x on
dimension D, the weights will be updated as follows [4]:

wv˙D;k.x/ D

´
wv˙

D;k�1
� e˛D;k �˙lpD;k ; x � thD;k;

wv˙
D;k�1

� e˛D;k �˙lpD;k ; x > thD;k :
(18)

For all other dimensions except D, updating the weight is based on two param-
eters �C and �� which represent the fraction of the positive and negative samples,
respectively, which were wrongly classified by the weak learner in dimension D.

Consider the Cumulative Distribution Function (CDF) of the normal distribu-
tion which is defined by:

CDF.�; �; x/ D
1

2

�

1C erf

�
x � �

�
p
2

��

; (19)

where erf./ is the error function of normal distribution.
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Figure 6. Calculating �.

Equation 19 represents the area under the curve of any of the positive or negative
classes in the interval Œ�1; x�. When a threshold th is specified for dimension D,
this th divides the area under the curve into classified and misclassified areas, as
shown in Figure 6. Since CDF represents the area under the curve of any of the
two classes, it follows that � is the percentage of data which is misclassified in
dimensionD. For the positive and negative curves, and different lp, � has different
values. Table 1 summarises the way by which � is computed.

The values of � will be in the range Œ0; 1�. For the two classes they are given as:

�C D
1

2

"

1 � erf

 
th � �p;D

�p;D
p
2

!#

; (20)

�� D
1

2

"

1C erf

 
th � �n;D

�n;D
p
2

!#

: (21)
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Class lp Misclassified Area �

Positive 1 Right side �C D 1� CDF

Positive �1 Left side �C D CDF

Negative 1 Left side �� D CDF

Negative �1 Right side �� D 1� CDF

Table 1. The method to calculate �. In this Table, the value of the CDF of the
positive curve is different from CDF of the negative curve.

Updating the weights of positive and negative samples of any dimension D ¤
D takes place by calculating the two limit points p1 and p2 illustrated in Figure 7
as follows

p1 D CDF�1.�; �; �/; (22)

CDF�1.�; �; x/ D �
p
2 � erf�1.2 � x � 1/C �; (23)

p2 D

´
p1; p1 D � � jp1 � �j if p1 > �;

�C jp1 � �j if p1 � �:
(24)

And the weight values will be updated as follows:

wv˙d;k.x/ D

8
ˆ̂
<

ˆ̂
:

wv˙
d;k�1

� e˛d;k ��lpd;k ; x < p1 or x > p2;

wv˙
d;k�1

� �˙
d;k
� e˛d;k �lpd;k C .1 � �˙

d;k
/ � e˛d;k ��lpd;k ;

x � p1 and x � p2:

(25)

When the best weak learner updates the weight values of its own dimension D,
it also influences the weight values of other dimensions d . This influence is the
projection of the weight update in D on the other dimensions d . The result of
this influence is that the distance between p1 and p2 is directly proportional to �,
while the amount of the weight value is inversely proportional to �. This means
that the better classification is achieved in dimension D the closer p1 and p2 are
in dimension d . This is depicted in Figure 8.

Once the weights are updated, the importance of different areas under the pos-
itive and negative curves changes depending on the weight values as shown in
Figure 9. This will affect the calculation of the next threshold value in the coming
rounds. The next section describes this thoroughly.
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Figure 7. Calculating the limit points p1 and p2.

    

wv Negative Class 

d 

wv Positive Class 

d 

Figure 8. Updated weights of the positive and negative classes in Dimension d with
low � (left) and high � (right).
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Figure 9. Weights of Positive and Negative classes after a number of rounds in
dimension d .
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4.3 Generalisation of Finding the Best Weak Learner

As boosting continues, the optimum threshold for the best weak learner of the
corresponding dimension in the current round could be any member of the set of
weight points (wpC and wp�) and the set of specific points thp in between a couple
of weight points.

As the weights of the different points on the positive and negative curves change
from the former round, the importance of the different regions under the curves of
the two classes would become different. Therefore, the summation of weights for
all classes would be the multiplication of the weights by the PDF portion in the
region under consideration. Hence, the summation of the weights is given by:

sumweights D

CX

i

Z CiC1

Ci

wvCi .t/ � p.t; �
C; �C/dt

C

CX

i

Z CiC1

Ci

wv�i .t/ � p.t; �
�; ��/dt: (26)

The summation of the misclassified weights in any specific point x in dimension
d is calculated in the same manner described above as follows:

missedweights.x/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

PC�x
i

R CiC1
Ci

wv�i .t/ � p.t; �
�; ��/dt

C
R x
C�x wv

�
i .t/ � p.t; �

�; ��/dt

C
PC>x
i

R CiC1
Ci

wvCi .t/ � p.t; �
C; �C/dt; lp D 1

PC�x
i

R CiC1
Ci

wvCi .t/ � p.t; �
C; �C/dt

C
R x
C�x wv

C
i .t/ � p.t; �

C; �C/dt

C
PC>x
i

R CiC1
Ci

wv�i .t/ � p.t; �
�; ��/dt; lp D �1:

(27)

Therefore, the error in position x of dimension d is calculated as follows:

Error.x/ D
1

sumweights
�missedweights.x/: (28)

Thus, by deriving Equation 28 and minimising the error, thp will be calculated as
follows:

Error0.x/ D
d

dx
missedweights.x/! Error0.thp/ D 0; (29)

thp D
�p;d � �

2
n;d
� �n;d � �

2
p;d
˙ �p;d � �n;d ��

�2
n;d
� �2

p;d

: (30)
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Where � is given by the following equation:

� D

v
u
u
t
�2�p;d � �n;d � 2�

2
p;d
� ln

��n;d
�p;d

�
C 2�2

n;d
� ln

��n;d
�p;d

�

C2�2
p;d
� ln

�wvn;d
wvp;d

�
� 2�2

n;d
� ln

�wvn;d
wvp;d

�
C �2

p;d
C �2

n;d

: (31)

If the value of thp produced by Equation 30 is a complex number, then this thp
will be rejected because the separator of two real datasets should be a real number.
Furthermore, if the location of thp is outside the range of the two weight points
used to produce the thp then this thp is also rejected. The remaining candidates in
the list are the weight points and the thp which pass the two rejection criteria. To
choose the optimum threshold among these candidates, Equation 28 is applied on
all of these candidates and the optimum threshold is the one which produces the
minimum error.

The four parameters specifying the new weak learner are specified as follows:

� The new thd;k will be used to specify the threshold of the new weak learner.

� lpd;k will remain the same as before.

� The classification error is calculated by applying Equation 28 to the optimum
threshold. Thus, ˛d;k is calculated by applying this classification error to
Equation 17.

� After all the weak learners of all dimensions are specified, D would be the
dimension of the weak learner with the maximum ˛d;k .

Therefore, this weak learner is then specified by [thD;k , lpD;k , Dk , ˛D;k].

5 Experiments and Discussions

NormalBoost was tested using a dataset consisting of 4000 gray images of human
faces which were normalised to 20�20 pixels. These images were exploited as the
positive class. Images in the negative class were created from 3019 gray images
of size 480�640 pixels of different scenes which do not contain any human faces.
Each image was scanned to create blocks of different sizes in different locations
in the image. The minimum size of the blocks was 20 � 20 pixels while the maxi-
mum size was 480�80 pixels. This process produced 5 million gray images which
were normalised to 20 � 20 pixels. Following the process described by Viola and
Jones [13], all normalised images in both positive and negative classes were con-
verted into integral images and the Haar-like features are then computed. A total
of 477 650 Haar-like features were calculated for each integral image.
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No. of Dimensions No. of samples NormalBoost AdaBoost

(T) (N) FPRate TPRate FPRate TPRate

2 2 � 103 0.285 0.976 0.124 0.903

2 2 � 104 0.011 0.955 0.008 0.957

10 2 � 105 0.005 0.935 0.020 0.9707

20 2 � 105 0.127 0.991 0.016 0.981

50 2 � 105 0.027 0.993 0 1

50 2 � 106 0.002 1 0 1

Table 2. False Positive and True Positive rates of the strong classifiers generated by
NormalBoost and AdaBoost in different testing datasets.

A total of six training datasets were created using the method described above.
For testing, another six datasets were created in which the data points on each
dimension of each class of one dataset are created using a normal distribution
based on the mean and standard deviation of the corresponding dimension and
class of the training dataset.

NormalBoost was trained and tested for 25 rounds using six different datasets.
Each dataset consisted of different dimensions and number of samples as shown
in Table 2. Figure 10 illustrates the classification rates of the six testing datasets.

Figure 10. Classification rates of the strong classifier in each round of NormalBoost
and AdaBoost.



204 E. Davami and H. Fleyeh

Figure 11. Computational time (top) and memory consumption (bottom) of training
the strong classifier in each round of AdaBoost and NormalBoost.

For the purpose of comparison, AdaBoost was trained and tested using exactly the
same datasets and experiment parameters. The performance of NormalBoost is
almost identical to that of AdaBoost. A small amount of performance difference
can be noticed between the two algorithms.

Figure 11 represents the time and memory consumption for training a strong
classifier from the training datasets using both AdaBoost and NormalBoost. The
time consumption of AdaBoost increases rapidly when the dimensionality of the
problem increases while NormalBoost is almost constant in comparison to Ad-
aBoost. The same behaviour applies to memory consumption. Figure 12 illustrates
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Figure 12. Visualisation of classification using the trained strong learner of Normal-
Boost (top) and AdaBoost (bottom) for T D 2 and N D 2000.

the visualisation of the strong classifier produced by the NormalBoost compared
with AdaBoost.

The processing complexity of AdaBoost is O.K � T � N � logN/ because in K
rounds, data in T dimensions need to be processed by sorting and searching for
the best weak learner. On the other hand, memory complexity is O.T � N/ be-
cause all the data which consists of N samples with T dimensions each should be
resident in the main memory. Unlike AdaBoost, NormalBoost requires an initial
pre-processing on data to extract the means and standard deviations of each of the
two classes in each of their dimensions thus the complexity of the pre-processing
phase would be O.T �N/.

NormalBoost initialises a total of 2 � K weight points and weight values for
each class in all T dimensions and then pre-processed data in K rounds and on T
dimensions and a maximum of 4�K candidate points per dimension will be trained.
After each round or training session is finished the weights would be updated in
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AdaBoost NormalBoost

Processing Complexity O.K � T �N � logN/ O.T .N CK2//

Memory Complexity O.T �N/ O.K � T /

Table 3. Complexity comparison of AdaBoost and NormalBoost.

all T dimensions thus the computational complexity of NormalBoost would be
O.T .N CK2//. In any given round the means and standard deviations of every T
dimension and also all the weight points and values would be present in the main
memory thus the memory complexity of NormalBoost would beO.K �T /. Table 3
shows a comparison of the complexity between AdaBoost and NormalBoost.

Figure 13 shows the ROC diagram of the NormalBoost for the experiment in
which a dataset of 10 dimensions and 2 � 105 samples are used. The strong clas-
sifier is trained on the training set while the threshold of the first weak learner is

Figure 13. The ROC diagrams of NormalBoost.
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gradually increased from �1 to C1. The resulting classifier is used to classify
the test dataset and the values of the false positive rates and the true positive rates
are computed for every threshold value.

6 Conclusions

NormalBoost, which is presented in this paper, is a novel binary classifier which
adaptively combines several weak classifiers to form a strong classifier. One of the
major problems of boosting is its high computational and memory complexity and
NormalBoost overcomes this problem. It is noise resistant because it only deals
with the means and standard deviations of the data within a specific dataset and
not the discrete values of training data. However, a small amount of accuracy drop
(usually less than 5%) is expected. NormalBoost has a linear computation growth
compared to the logarithmic computation growth of AdaBoost thus is much less
complex in terms of computation and memory complexity.

NormalBoost can be used to classify any dataset with a normal distribution
among its dimensions thus this makes it applicable in rapid object detection, voice
and fingerprint recognition, and statistical analysis of various datasets.
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