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Computational study of the step size parameter of the subgradient
optimization method

Mengjie Han1

Abstract

The subgradient optimization method is a simple and flexible linear programming
iterative algorithm. It is much simpler than Newton’s method and can be applied to
a wider variety of problems. It also converges when the objective function is non-
differentiable. Since an efficient algorithm will not only produce a good solution but
also take less computing time, we always prefer a simpler algorithm with high quality.
In this study a series of step size parameters in the subgradient equation is studied.
The performance is compared for a general piecewise function and a specific p-median
problem. We examine how the quality of solution changes by setting five forms of step
size parameter α.
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1 Introduction

The subgradient optimization method is suggested by Kiwiel (1985) and Shor (1985) for solv-
ing non-differentiable function, such as constrained linear programming. As to the ordinary
gradient method, the subgradient method is extended to the non-differentiable functions. The
application of subgradient method is more straightforward than other iterative methods, for
example, the interior point method and the Newton method. The memory requirement is
much lower due to its simplicity. This property reduces the computing burden when big data
is handled.

However, the efficiency or the convergence speed of the subgradient method is likely to be
affected by pre-defined parameter settings. One always would like to apply the most effi-
cient empirical parameter settings on the specific data set. For example, the efficiency or the
convergence speed has relation to the step size (a scalar on the subgradient direction) in the
iteration. In this paper, the impact of the step size parameter in the subgradient equation
on the convex function is studied. Specifically, an application of the subgradient method is
conducted with p-median problem using Lagrangian relaxation. In this specific application,
we study the impact of the step size parameter on the quality of the solutions.

Methods for solving the p-median problem are widely studied (see Reese, 2006; Mladenović,
2007; Daskin,1995). Reese (2006) summarized the literature on solution methods by sur-
veying eight types of methods and listing 132 papers or books. Linear programming (LP)
relaxation accounts for 17.4% among the 132 papers or books. Mladenović (2007) examined
the metaheuristics framework for solving p-median problem. Metaheuristics has led to sub-
stantial improvement in solution quality when the problem scale is large. The Lagrangian
heuristic is a specific representation of LP and metaheuristics. Daskin (1995) also showed
that the Lagrangian method always give good solutions compared to constructive methods.
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Solving p-median problems by Lagrangian heuristics is often suggested (Beasley, 1993; Daskin,
1995; Beltran, 2004; Avella, 2012; Carrizosa, 2012). The corresponding subgradient optimiza-
tion algorithm has also been suggested. A good solution can always be found by narrowing
the gap between the lower bound (LB) and the best upper bound (BUB). This property
provides an understanding of how good the solution is. The solution can be improved by
increasing the best lower bound (BLB) and decreasing the BUB. This procedure could stop
either when the critical percentage difference between LB and BUB is reached or when the
parameter controlling the LB’s increment becomes trivial. However, the previous studies did
not examine how the LB’s increment affects the quality of the solution. The LB’s increment is
decided by the step size parameter of the subgradient substitution. Given this open question,
the aim of this paper is to examine how the step size parameter in the subgradient equation
affect the performance of a convex function through a general piecewise example and several
specific p-median problems.

The remaining parts of this paper are sectionally organized in subgradient method and the
impact of step size, p-median problem, computational results and conclusions.

2 Subgradient method and the impact of step size

The subgradient method provides a framework of minimizing a convex function f : Rn → R
by using the iterative equation:

x(k+1) = x(k) − α(k)g(k). (2.1)

In (2.1) x(k) is the kth iteration of the argument x of the function. g(k) is an arbitrary
subgradient of f at x(k). α(k) is the step size. The convergence of (2.1) can be proved by
Shor (1985).

2.1 step size forms

Five typical rules of step size are listed in Stephen and Almir (2008). They can be summarized
as:

• constant size: α(k) = ξ

• constant step length: α(k) = ξ/‖g(k)‖2

• square summable but not summable: α(k) = ξ/(b+ k)

• nonsummable diminishing: α(k) = ξ/
√
k

• nomsummable diminishing step length: α(k) = ξ(k)/‖g(k)‖2
The form of the step size is pre-set and will not change. The top two forms, α(k) = ξ and
α(k) = ξ/‖g(k)‖2, are not examined since they are constant size or step length which are lack
of variation for p-median problem. On the other hand, the bottom three forms are studied.
We restrict ξ(k) such that ξ(k)/‖g(k)‖2 can be represented by an exponential decreasing
function of α(k). Thus, we study α(k) = ξ/k, α(k) = ξ/

√
k, α(k) = ξ/1.05k, α(k) = ξ/2k

and α(k) = ξ/ exp(k) in this paper. We first examine the step size impact on a general
piecewise convex function and then on the p-median problem.
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Figure 1: Objective values of picewise convex function when five forms of step sizes are compared

2.2 general impact on convex function

We consider to minimize the function:

f(x) = max
i

(aT
i x+ bi)

where x ∈ Rn and a subgradient g can be taken as g = ∇f(x) = aj (aT
j x + bj maximizes

aT
i x + bi, i = 1, . . . ,m). In our experiment, we take m = 100 and the dimension of x being

10. Both a ∼ MVN(0, I) and b ∼ N(0, 1). The initial value of constant ξ is 1. The initial
value of x is 0. We run the subgradient iteration 1000 times. Figure 1 shows a non-increased
objective values of the function against the number of iterations. The objective value is
taken when there is a improvement of the objective function. Otherwise, it is taken as the
minimum value in the previous iterations.

In Figure 1, α(k) = 1/2k and α(k) = 1/ exp(k) have similar converging patterns and quickly
approach the “optimal” bottom. The convergence speed of α(k) = 1/

√
k is a bit slower, but it

has a steep slop before 100 iterations as well. α(k) = 1/
√
k does not have a fast improvement

after 200 iterations, while α(k) = 1/1.05k has an approximately uniform convergence speed.
However, α(k) = 1/

√
k is still far away from the “optimal” bottom. In short, α(k) = 1/2k

and α(k) = 1/ exp(k) provide uniformly good solutions which would is more efficient when
dealing with big data.
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3 p-median problem

An important application of the subgradient method is solving p-median problems. Here,
the p-median problem is formulated by integer linear programming. It is defined as follows.

Minimize:
∑
i

∑
j

hidijYij (3.1)

subject to: ∑
j

Yij = 1 ∀i (3.2)

∑
j

Xj = P (3.3)

Yij −Xj 6 0 ∀i, j (3.4)

Xj = 0, 1 ∀j (3.5)

Yi,j = 0, 1 ∀i, j (3.6)

In (3.1), hi is the weight on each demand point and dij is the cost of the edge. Yij is the
decision variable indicating that if a trip between node i and j is made or not. Constraint
(3.2) ensures that every demand point must be assigned to one facility. In (3.3) Xj is de-
cision variable and it ensures that the number of facilities to be located is P . Constraint
(3.4) indicates that no demand point i is assigned to j unless there is a facility. In constraint
(3.5) and (3.6) the value 1 means that the locating (X) or travelling (Y ) decision is made. 0
means that the decision is not made.

To solve this problem using sugradient method, the Lagrangian relaxation must be made.
Since the number of facilities, P , is fixed, we cannot relax the locating decision variable Xj .
Consequently, the relaxation is necessarily put on the travelling decision variable Yij . It could
be made either on (3.2) or on (3.4). In this paper, we only consider the case for (3.2), because
the same procedure would be applied on (3.4). We do not repeat this for (3.4). What we
need to do is to relax this problem for fixed values of the Lagrange multipliers, find primal
feasible solutions from the relaxed solution and improve the Lagrange multipliers (Daskin,
1995). Consider relaxing constraint (3.2), we have

Minimize:
∑
i

∑
j

hidijYij +
∑
i

λi(1−
∑
j

Yij)

=
∑
i

∑
j

(hidij − λi)Yij +
∑
i

λi
(3.7)

with constraints (3.3)–(3.6) unchanged. In order to minimize the objective function for fixed
values of λi, we set Yij = 1 when hidij − λi < 0 and Yij = 0 otherwise. The corresponding
value of Xj is 1. A set of initial values of λis are given by the mean weighted distance between
each node and the demand points.
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Lagrange multipliers are updated in each iteration. The step size value in the kth itera-
tion for the multipliers T (k) is :

T (k) =
α(k)(BUB − L(k))∑

i{
∑

j Y
(k)
ij − 1}2

, (3.8)

where T (k) is the kth step size value; BUB is the minimum upper bound of the objective

function until the kth iteration; L is the value evaluated by (3.7) at the kth iteration;
∑

j Y
(k)
ij

is the current optimal value of the decision variable. The Lagrangian multipliers, λi, are
updated by:

λ
(k+1)
i = max{0, λ(k)i − T (k)(

∑
j

Y
(k)
ij − 1)}. (3.9)

A general working scheme is:

• step 1 Plug the initial values or updated values of λi into (3.7) and identify the p
medians according to hidij − λi;

• step 2 According to p medians in step 1, evaluate the subgradient g(k) = 1 −
∑

j Yij ,

BUB and L(k). If the stopping criteria is met, stop. Otherwise, go to step 3;

• step 3 Update T (k) using (3.8);

• step 4 Update Lagrangian multipliers λ
(k)
i s using (3.9). Then go to step 1 with new

λis.

The lower bound (LB) in each iteration is decided by the value of λis. The step size T (k)

will affect the update speed of λis. It goes to 0 when the number of iterations tend to
infinity. When it goes slowly, the increment of LB would be fast but unstable. This leads to
inaccurate estimates of the LB. On the other hand, when the update speed goes too fast, the
update of LB is slow. The non-update would easily happen such that the difference between
BUB and BLB remains even though more iterations are made. The danger will arise if the
inappropriate step size is computed. Thus, a good choice of executed parameter controlling
the update speed would make the algorithm more efficient.

4 Computational results

In this section, we study the parameter, α, controlling the step size. Daskin (1995) suggested
an initial value of 2 and a halved decreasing factor after 5 failures of changing; Avella (2012)
suggested an initial value of 1.5 and a 1.01 decreasing factor after one failure of changing.
We could also consider other alternative initial values instead of that in the previous studies.
However, that is only a minor issue and not related to the step size function. Thus, we skip
the analysis of the initial values.

The complexity in our study is different from Daskin (1995) and Avella (2012). We take
medium sized problems from the OR-library (Beasley, 1990). The OR-library consists of 40
test p-median problems. The optimal solutions are given. We pick eight cases. N varies
from 100 to 900 and P varies from 5 to 80. A subset is picked in our study by only select-
ing two cases for each N = 100, 200, 400, 800. The parameter α take five forms. Following
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Table 1: Lagrangian settings testing a subset of OR-library

α(k)

form 1: ξ/k

form 2: ξ/
√
k

form 3: ξ/1.05k

form 4: ξ/2k

form 5: ξ/ exp(k)
n (number of failures before changing α) 5
restart the counter when α changed Yes
critical difference 0.01
initial values of λis

∑
j hidijYij/

∑
j

maximum iterations after no improvement on BUB m = 1000 and m = 100

Stephen and Almir (2008), we take the forms of α(k) = ξ/k, α(k) = ξ/
√
k, α(k) = ξ/1.05k,

α(k) = ξ/2k and α(k) = ξ/ exp(k).The procedure settings are shown in Table 1.

In Table 1, α(k) is the step size function of. We take ξ = 1 as we did for the piecewise
function f(x). n is a counter recording the number of 5 consecutive failures. As suggested
by Daskin (1995), we do not further elaborate the impact from the counter. The critical
difference takes the value of 1% of the optimal solution. This is only a criterion for known
optimal values and it can be largely affected by the type of the problem. Considering that,
the algorithm also stops if no improvement of BUB is found after preset number of iterations.
Here we compare 100 and 1,000. Given the settings, the results are shown in Table 2 and
Table 3.

In Table 2 and Table 3, optimal solution values are given for two stopping criteria. The
problem complexity varies. We compare different forms of α(k). BLBs (best lower bound),
BUBs (best upper bound), deviations (BUB−Optimal

Optimal × 100%), U/L (BUB
BLB ) and the number of

iterations. The optimal BUB and U/L are marked in bold.

Table 2 shows the solutions for m = 100. For pmed 1 and pmed 6 of the OR-library, the
exact optimal solutions are obtained. For pemd 35, an almost exact solution is also obtained.
On the other hand, for pmed 4, pmed 9, pmed 18 and pmed 37, the BLB is much closer to
the optimal. For most of the cases, the step size function with the minimum U/L ratio gives
the lowest BUB. It is an indication of the good quality of the algorithm even though 1/1.05k

performs very bad in pmed 18 and pmed 37. It is no surprise that more exact solutions
appear when the number of iterations is increased, for example, 1/1.05k in pmed 1 and pmed
6; 1/k in pmed 4 and pmed 35 in Table 3. Similarly, we also improve the quality of BLBs.
The worst deviation is 17.70 for m = 1000 instead of 44.14 for m = 100.

There are several overall tendencies we can draw from Table 2 and Table 3. Firstly, 1/2k and
1/ exp(k) are relatively stable which is also in accordance with piecewise function we studied
before. This can be seen not only for less complicated problem but also for the complicated
case. However, there is no obvious tendency of which one will dominates. Secondly, it is
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Table 2: Comparison of optimal solutions for different step size decreasing speed (m = 100)
File No. fn(α) BLB BUB Optimal Deviation (%) U/L Iterations

pmed 1
(N = 100
P = 5)

1/k 5803 5821 5819 0.03 1.003 65

1/
√
k 5811 5821 5819 0.03 1.002 98

1/1.05k 5521 6455 5819 10.93 1.169 103
1/2k 5796 5819 5819 0.00 1.005 46

1/exp(k) 5796 5821 5819 0.03 1.005 53

pmed 4
(N = 100
P = 20)

1/k 3032 3265 3034 7.61 1.077 300

1/
√
k 3030 3297 3034 8.67 1.088 435

1/1.05k 3034 3182 3034 4.88 1.049 535
1/2k 3034 3182 3034 4.88 1.049 249

1/exp(k) 3034 3182 3034 4.88 1.049 164

pmed 6
(N = 200
P = 5)

1/k 7770 8238 7824 5.29 1.060 143

1/
√
k 7760 8195 7824 4.74 1.056 202

1/1.05k 7459 8948 7824 14.37 1.200 153
1/2k 7753 7824 7824 0.00 1.009 145

1/exp(k) 7751 7824 7824 0.00 1.009 56

pmed 9
(N = 200
P = 40)

1/k 2732 3051 2734 11.59 1.117 471

1/
√
k 2719 3264 2734 20.04 1.200 386

1/1.05k 2725 3239 2734 18.47 1.189 451
1/2k 2732 3069 2734 12.25 1.123 282

1/exp(k) 2732 3127 2734 14.37 1.145 297

pmed 16
(N = 400
P = 5)

1/k 8090 8253 8162 1.411 1.020 231

1/
√
k 8086 8240 8162 0.96 1.019 261

1/1.05k 8092 8185 8162 0.28 1.011 534
1/2k 8088 8239 8162 0.94 1.019 210

1/exp(k) 8080 8206 8162 0.54 1.016 156

pmed 18
(N = 400
P = 40)

1/k 4807 5021 4809 4.22 1.043 256

1/
√
k 4801 5150 4809 7.09 1.073 516

1/1.05k 3848 6913 4809 43.75 1.797 101
1/2k 4805 4865 4809 1.16 1.012 216

1/exp(k) 4803 4902 4809 1.93 1.021 269

pmed 35
(N = 800
P = 5)

1/k 10288 10504 10400 0.01 1.021 124

1/
√
k 10296 10401 10400 0.01 1.010 254

1/1.05k 10183 10710 10400 2.98 1.052 144
1/2k 10286 10401 10400 0.01 1.011 201

1/exp(k) 10282 10401 10400 0.01 1.012 239

pmed 37
(N = 800
P = 80)

1/k 5056 5248 5057 3.78 1.038 306

1/
√
k 5033 5577 5057 10.28 1.108 342

1/1.05k 3820 7289 5057 44.14 1.908 101
1/2k 5055 5137 5057 1.58 1.016 314

1/exp(k) 5051 5100 5057 0.85 1.010 161
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Table 3: Comparison of optimal solutions for different step size decreasing speed (m = 1000)
File No. α(k) BLB BUB Optimal Deviation (%) U/L Iterations

pmed 1
(N = 100
P = 5)

1/k 5804 5821 5819 0.03 1.003 65

1/
√
k 5811 5821 5819 0.03 1.002 98

1/1.05k 5815 5819 5819 0.00 1.001 239
1/2k 5796 5819 5819 0.00 1.004 46

1/exp(k) 5796 5821 5819 0.03 1.004 53

pmed 4
(N = 100
P = 20)

1/k 3034 3182 3034 4.88 1.049 1975

1/
√
k 3031 3259 3034 7.42 1.075 1580

1/1.05k 3034 3182 3034 4.88 1.049 1435
1/2k 3034 3182 3034 4.88 1.049 1162

1/exp(k) 3034 3182 3034 4.88 1.049 1064

pmed 6
(N = 200
P = 5)

1/k 7782 8086 7824 3.35 1.039 1417

1/
√
k 7783 7867 7824 0.66 1.011 1853

1/1.05k 7783 7824 7824 0.00 1.005 698
1/2k 7753 7824 7824 0.00 1.009 145

1/exp(k) 7751 7824 7824 0.00 1.009 56

pmed 9
(N = 200
P = 40)

1/k 2733 3051 2734 11.59 1.116 1371

1/
√
k 2720 3217 2734 17.70 1.183 1400

1/1.05k 2734 3098 2734 13.31 1.133 1674
1/2k 2732 3069 2734 12.25 1.123 1182

1/exp(k) 2732 3073 2734 12.40 1.125 1359

pmed 16
(N = 400
P = 5)

1/k 8091 8219 8162 0.70 1.016 1685

1/
√
k 8088 8240 8162 0.96 1.019 1161

1/1.05k 8092 8162 8162 0.00 1.009 859
1/2k 8088 8183 8162 0.26 1.012 1433

1/exp(k) 8080 8206 8162 0.54 1.016 1056

pmed 18
(N = 400
P = 40)

1/k 4808 4943 4809 2.79 1.028 1499

1/
√
k 4807 4957 4809 3.08 1.031 3453

1/1.05k 4809 4894 4809 1.77 1.018 2707
1/2k 4805 4841 4809 0.67 1.007 314

1/exp(k) 4803 4877 4809 1.41 1.015 1726

pmed 35
(N = 800
P = 5)

1/k 10297 10401 10400 0.01 1.010 1453

1/
√
k 10297 10401 10400 0.01 1.010 348

α/1.05k 10302 10481 10400 0.78 1.017 1696
α/2k 10286 10401 10400 0.01 1.011 1011

α/exp(k) 10282 10401 10400 0.01 1.012 1139

pmed 37
(N = 800
P = 80)

1/k 5057 5124 5057 1.32 1.013 1779

1/
√
k 5056 5201 5057 2.85 1.029 3281

1/1.05k 5057 5140 5057 1.64 1.016 2159
1/2k 5055 5123 5057 1.31 1.013 2009

1/exp(k) 5051 5100 5057 0.85 1.010 161
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Figure 2: Changes for BLB and BUB for file No.9 and No.35

difficult for 1/
√
k to perform better that the rest of 4 forms to have a optimal BUB, which is

in accordance with the piecewise function. One reason is that when the number of iterations
is large, a slightly short step size is required. Too large steps can bring infeasible solutions,
which to some extent enlarge the gaps between BLBs and BUBs. Thirdly, 1/k and 1/1.05k

are too sensitive to the stopping criterion, which is not seen in the general piece wise func-
tion. Decision for stop the algorithm should be very carefully made. One suggested way is
to visualize the convergence curve and to terminate the iteration when the curve becomes flat.

Generally speaking, the BLB and the BUB tend to complement each other. In other words,
one can always make an inference that either the BLB or the BUB would be the benchmark
when there is a gap between BLB and BUB. In Figure 2, for example, two extreme cases
are shown. The grey line represents the optimal value. The left panel shows the first 800
objective values for five forms of step size functions in problem 9 (pmed 9). The right one
shows the values in problem 35 (pmed 35). For pmed 9, the BLBs quickly converge to the
optimal. However, only sub-optimal BUBs are obtained. On the contrary, pmed 35 has good
BUBs and bad BLBs. Thus, either the BLB or BUB is likely to reach the sub-optimal. When
this happens, a complement algorithm could be involved to improve the solution.

5 Conclusion

In this paper, we studied how the decreasing speed of step size in the subgradient optimization
method affects the performance of the convergence. The subgradient optimization method
is simpler in solving linear programming. However, the choice of the step function in the
subgradient equation can bring uncertainties to the solution. Thus, we conduct our study on
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examining how the step size function parameter α affect the performance. Both a general
piecewise function and a specific p-median problem are studied. The p-median problem is
represented by linear programming and the corresponding Lagragian relaxation is added.

We examined five forms of the step size parameters α. One is square summable but not
summable form α(k) = ξ/(b + k). One is nonsummable diminishing form α(k) = ξ/

√
k.

Three are nonsummable diminishing step length forms α(k) = ξ/1.05k, α(k) = ξ/2k and
α(k) = ξ/ exp(k). We evaluated the best upper bound, best lower bound, and the required
iterations to reach our stopping criteria. We have the following conclusions.

Firstly, the nonsummable diminishing step size function α(k) = ξ/
√
k has its limitation when

the number of iterations are large. For both the general piecewise function and the p-median
problem, nonsummable diminishing step size function performs bad and easily goes into
the suboptimal solution. Two nonsummable diminishing step length function α(k) = ξ/2k

and α(k) = ξ/ exp(k) have similar behaviors and stable solutions. As long as the prob-
lem is not likely to lead to the suboptimal solutions, step size function α(k) = ξ/2k and
α(k) = ξ/ exp(k) always give fast convergence for both BLB and BUB. This is found both in
general piecewise function and p-median problems. The square summable but not summable
form α(k) = ξ/(b+k) as well as nonsummable diminishing form α(k) = ξ/1.05k are unstable.
They are also sensitive to the number of iterations.

Secondly, from our empirical result, the quality of the solution will be largely affected by the
specific type of the problem. The problem characteristic may have influence on the difficulties
of avoiding suboptimal solutions. If it is easy to avoid suboptimal solutions for a specific step
size function α, one can make a good inference. On the other hand, if the subgradient method
can always produce the suboptimal solution, a complement algorithm can be considered to
get out from the suboptimal.

Thirdly, the problem complexity has little impact. We cannot assert that good solutions
can be found for a less complex problem and bad solutions for a complex solution for a
subgradient method.
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