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Abstract

This thesis contributes to the heuristic optimization of the p-median problem and Swedish
population redistribution.

The p-median model is the most representative model in the location analysis. When
facilities are located to a population geographically distributed in Q demand points, the
p-median model systematically considers all the demand points such that each demand
point will have an effect on the decision of the location. However, a series of questions
arise. How do we measure the distances? Does the number of facilities to be located have
a strong impact on the result? What scale of the network is suitable? How good is our
solution? We have scrutinized a lot of issues like those. The reason why we are interested
in those questions is that there are a lot of uncertainties in the solutions. We cannot
guarantee our solution is good enough for making decisions. The technique of heuristic
optimization is formulated in the thesis.

Swedish population redistribution is examined by a spatio-temporal covariance model. A
descriptive analysis is not always enough to describe the moving effects from the neigh-
bouring population. A correlation or a covariance analysis is more explicit to show the
tendencies. Similarly, the optimization technique of the parameter estimation is required
and is executed in the frame of statistical modeling.

Keywords: optimization; heuristic; p-median; spatio-temporal covariance
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1 Introduction

Optimization is a process of reaching the maximum or minimum values of the objective
functions. The analytical result and conclusion are always drawn according to optimiza-
tion outcomes. Optimization is a necessary procedure to evaluate a model. If the optimal
values are extremely difficult to obtain, we need to consider adjusting our optimization
methods, the models or the restrictions.

Two main specific applications are related to optimization in the thesis. One is on the
operational location problem. For location problems, we usually minimize the average or
the maximum transportation cost, for example, the distance, the fuel consumption or the
traveling time between the demand points and the facilities. Badly located facilities can
greatly increase the average or the maximum cost. The complexity of location problem
can increase fairly fast due to the increment of the number of facilities and the possible
candidate locations. Since this astronomical combinatorial property can lead to subopti-
mal solutions, the corresponding optimization operations should be considered.

The other application is on statistical modeling. Statistical models are characterized by
random variables and uncertainties. There always exists a gap between the theoretical (or
optimal) parameterized curves and empirical (or estimated) curves. The gap comes from
the randomness. For some parameterized models, the moment estimator or the likelihood
estimator cannot be easily obtained due to the implicit form of the likelihood functions.
The iterative optimization method is always employed to improve the estimation and
narrow the gap.

2 Applications and Models

Our focus is mainly on location models and the spatio-temporal covariance model. The
practical applications are regarding locating hospitals in a region of Sweden and Swedish
population redistribution, respectively. Both of them make use of the optimization method
to evaluate empirical results.

2.1 p-median model

Location models assist in the location problem by suggesting optimal locations of facilities
according to an objective function. For the location models, we represent the problem by
the p-median model. The idea is to optimally locate a number of facilities for a population
geographically distributed in Q demand points such that the population’s average distance
is minimized. Hakimi (1964) offers an original and clear structure of this issue including
definitions of several key concepts. Several reviews of p-median problem have been made
(Farahani et al., 2012; Francis et al., 2009; Reese, J., 2006; and Mirchandani, 1990).
Hakimi (1965) showed that the optimal solution of p-median problem can always be found
on the nodes. Due to his argument, the p-median problem is always identified as discrete
problem (Daskin, 1995). Thus, the definition of the linear integer programming (Rosing,
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et al., 1979) is:

Minimize:
∑
i

∑
j

hidijYij (1)

subject to: ∑
j

Yij = 1 ∀i (2)

∑
j

Xj = P (3)

Yij −Xj ≤ 0 ∀i, j (4)

Xj = 0, 1 ∀j (5)

Yi,j = 0, 1 ∀i, j. (6)

In (1) hi is the weight on each demand point and dij is the cost of the edge. Yij is the
decision variable indicating if a trip between node i and j is made or not. Constraint (2)
ensures that every demand point must be assigned to one facility. In constraint (3) Xj

is the decision variable and it ensures that the number of facilities to be located is P .
Constraint (4) indicates that no demand point i is assigned to j unless there is a facility.
In constraint (5) and (6) the value 1 means that the locating (X) or travelling (Y ) decision
is made. 0 means that the decision is not made.

The p-median model is NP-hard (Kariv and Hakimi, 1979). For the p-median model,
many issues can affect the optimal locations or solutions. Thus, we have examined the
effect from the distance measure, the impact of the variation on the network density, the
impact of the variation on the number of facilities, the assumption that the demand or the
customer gravitates to a facility because of the distance to it and the attractiveness of it,
and the impact of the step size parameter in the subgradient method on the quality of the
p-median optimal solutions. In these empirical studies, different methods and adaptive
algorithms are considered for executing or evaluating the optimal solutions.

2.2 spatio-temporal covariance model

On the other hand, the spatio-temporal covariance model is applied to the analysis of
population redistribution in Sweden. According to H̊akansson (2000), the Swedish popu-
lation has different redistribution tendencies at a local level and at a regional level. The
spatio-temporal covariance model acts as an complementary causality analysis based on
the Local Moran’s I index analysis.

3 Heuristics

For a optimization problem, a heuristic is designed for solving a problem more quickly
when classic methods are too slow, or for finding an approximate solution when classic
methods fail to find any exact solution. It is a useful technique for NP-hard problem. Two
definitions have shown the essence of the heuristic:
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“A heuristic is a rule of thumb, strategy, trick, simplification, or any other
kind of device which drastically limits search for solutions in large problem
space. Heuristics do not guarantee optimal solutions; in fact, they do not
guarantee any solution at all; all that can be said for a useful heuristic is that
it offers solutions which are good enough most of the time.” (Feigenbaum
and Feldman, 1963, p.6)

“Heuristic are criteria, methods, or principles for deciding which among sev-
eral alternative courses of action promises to be the most effective in order
to achive some goal.” (Pearl, 1984, p.3)

Both the location problem and statistical modeling have their limitations when the ob-
jective function or the parameterized model is optimized. For the location model, the
limitation arises when the problem complexity increases. For the statistical model, both
the complexity and the multidimensional non-linear objective function (e.g. likelihood
function) can cause limitations. A problem is that the “best” solution is not explicit.
Thus, heuristic methods or algorithms are employed.

The evolutionary heuristic method is a suitable operation for the optimization problem,
because the solution in the next step or iteration always inherits the “direction” property
of the current step or iteration. If this “direction” leads to the optimal solution, a fast
and good solution can be obtained. Since it is difficult to identify the right direction, it is
usually handled by a heuristic method. This can be seen in the thesis.

4 Paper list

Dissertation thesis:

I Carling, K., Han, M. and H̊akansson, J., 2012. Does Euclidean distance work
well when p-median model is applied in rural areas? Annals of Operation Research
201(1), 83–97.

The p-median model is used to locate P centers to serve a geographically distributed
population. A cornerstone of such a model is the measure of distance between a ser-
vice center and demand points, i.e. the location of the population (customers, pupils,
patients, and so on). Evidence supports the current practice of using Euclidean dis-
tance. However, we find that the location of multiple hospitals in a rural region of
Sweden with a non-symmetrically distributed population is quite sensitive to dis-
tance measure, and somewhat sensitive to spatial aggregation of demand points.

In this paper, three restrictions are put up to reduce the problem complexity such
that the optimal objective function is easily evaluated by the Monte Carlo simulation.

II Carling, K., Han, M., H̊akansson, J. and Rebreyend, P., 2012. Distance measure
and the p-median problem in rural areas, Working paper in transport, tourism, in-
formation technology and microdata analysis, ISSN 1650-5581; 07. Submitted.
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In this paper we extend the work of Paper 1 by using of a refined network and study
systematically the case when P is of varying size (2-100 facilities). We find that the
network distance gives as good a solution as the travel-time network. The Euclidean
distance gives solutions some 2-7 per cent worse than the network distances, the so-
lutions deteriorate with increasing P. Our conclusions extend to intra-urban location
problems.

Since problem complexity is increased, we select the heuristic simulated annealing
algorithm as our operating method. The empirical parameters are decided after it
was tested on a smaller scale problem.

III Han, M., H̊akansson, J. and Rebreyend, P., 2013. How do different densities in a
network affect the optimal location of service centers? Working paper in transport,
tourism, information technology and microdata analysis, ISSN 1650-5581; 15. Sub-
mitted to European Journal of Operational Research.

The optimal locations are sensitive to geographical context such as road network
and demand points especially when they are asymmetrically distributed in the plane.
Most studies focus on evaluating performances of the p-median model when p and n
vary. To our knowledge this is not a very well-studied problem when the road net-
work is alternated especially when it is applied in a real world context. The aim in
this study is to analyze how the optimal location solutions vary, using the p-median
model, when the density in the road network is alternated. To locate 5 to 50 service
centers we use the national transport administrations official road network (NVDB).
The road network consists of 1.5 million nodes. To find the optimal location we start
with 500 candidate nodes in the network and increase the number of candidate nodes
in steps up to 67,000. To find the optimal solution we use a simulated annealing
algorithm with adaptive tuning of the temperature. The results show that there
is a limited improvement in the optimal solutions when nodes in the road network
increase and p is low. When p is high the improvements are larger. The results also
show that choice of the best network depends on p. The larger p the larger density
of the network is needed.

The optimal solution is examined in another perspective in this paper. The net-
work density is varied. Our contribution provides a framework of premises before
optimization.

IV Carling, K., Han, M. and H̊akansson, J., 2012. An empirical test of the gravity
p-median model. Working paper in transport, tourism, information technology and
microdata analysis, ISSN 1650-5581; 2012:15. Submitted.

A customer is presumed to gravitate to a facility because of the distance to it and
the attractiveness of it. However regarding the location of the facility, the presump-
tion is that the customer opts for the shortest route to the nearest facility. This
paradox was recently solved by the introduction of the gravity p-median model. The
model is yet to be implemented and tested empirically. We implemented the model
in an empirical problem of locating locksmiths, vehicle inspections, and retail stores
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of vehicle spare-parts, and we compared the solutions with those of the p-median
model. We found the gravity p-median model to be of limited use for the problem
of locating facilities as it either gives solutions similar to the p-median model, or it
gives unstable solutions due to a non-concave objective function.

In this paper we continued using simulated annealing on all optimization problems.
To have a idea on how good the solution is, we also examined the bounded optimal
value with 99% probability.

V Han, M., H̊akansson, J. and Rönneg̊ard, L., 2012. How do neighbouring popula-
tions affect local population growth over time? Submitted to Population, Space and
Place

This study covers a period when society changed from a pre-industrial agricultural
society to a post-industrial service-producing society. Parallel with this social trans-
formation, major population changes took place. One problem with geographical
population studies over long time periods is accessing data that has unchanged spa-
tial divisions. In this study, we analyse how local population changes are affected by
neighbouring populations. To do so we use the last 200 years of population redis-
tribution in Sweden, and literature to identify several different processes and spatial
dependencies. The analysis is based on a unique unchanged historical parish division,
and the methods used are an index of local spatial correlation. To control inherent
time dependencies, we introduce a non-separable spatio-temporal correlation model
into the analysis of population redistribution. Several different spatial dependencies
can be observed simultaneously over time. The main conclusions are that while local
population changes have been highly dependent on the neighbouring populations,
this spatial dependence has already become insignificant already when two parishes
are separated by 5 kilometres.

Regarding the optimization of spatio-temporal covariance parameters, we need to
find a theoretical curve that minimizes the difference to the observed curves. The
corresponding iterative method is also applied on the estimation.

VI Han, M., 2013. Computational study of the step size parameter of the subgradient
optimization method. Manuscript.

The subgradient optimization method is a simple and flexible linear programming
iterative algorithm. It is much simpler than Newton’s method and can be applied
to a wider variety of problems. It also converges when the objective function is
non-differentiable. Since an efficient algorithm will not only produce a good solution
but also take less computing time, we always prefer a simpler algorithm with high
quality. In this study a series of step size parameters in the subgradient equation are
studied. The performance is compared for a general piecewise function and a specific
p-median problem. We examine how the quality of solution changes by setting five
forms of step size parameter.
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A bounded optimal solution is evaluated in this paper, which gives an idea of how
good the solution is. Our contribution suggested identifying a set of parameters that
produces the minimum error to improve the solution.

Additional papers not included in the thesis:

I Carling, K., Han, M., H̊akansson, J., Meng, X. and Rudholm, N., 2013. CO2-
emissions induced by online and brick-and-mortar retailing. Working paper.

II Rebreyend, P., Han, M. and H̊akansson, J., 2013. How does different algorithm
work when applied on the different road networks when optimal location of facilities
is searched for in rural areas? Proceeding paper in The 14th international conference
on web system engineering, Nanjing, China.

5 Concluding Remarks

We usually want to obtain the “best” solution or the almost “ best” solution when we
are operating optimization on a model. This makes the analytical evaluation of the com-
putational solution very important, because we cannot guarantee whether our solution is
the “best” or almost the “ best”. Thus, either the improvement on the algorithm or the
adjustment of the model settings can be made for drawing a satisfied conclusion.

In our thesis, the evaluation of the optimized result varies through the application on
the location problem and the spatio-temporal covariance model. The resulting analytical
conclusion is reliable and meaningful. We can also make corresponding transportation
policies and plans that can greatly improve transportation efficiency and reduce operational
costs.
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model is applied in rural areas?
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Abstract The p-median model is used to locate P centers to serve a geographically dis-
tributed population. A cornerstone of such a model is the measure of distance between a
service center and demand points, i.e. the location of the population (customers, pupils,
patients, and so on). Evidence supports the current practice of using Euclidean distance.
However, we find that the location of multiple hospitals in a rural region of Sweden with a
non-symmetrically distributed population is quite sensitive to distance measure, and some-
what sensitive to spatial aggregation of demand points.

Keywords Optimal location · Euclidean distance · Network distance · Travel time · Spatial
aggregation · Location model

1 Introduction

This work originated from a desire to investigate whether the current locations of two emer-
gency hospitals in the rural region of Dalecarlia in mid-Sweden are accessible to the re-
gion’s population. These hospitals serve a geographically dispersed and non-symmetrically
distributed population, and the recent closure of three emergency hospitals in the region
prompted this investigation. Moreover, the regional administrative division of Sweden is
currently under revision, and one potential outcome is a reconfiguration of the current 21
regions into significantly fewer regions. Since the regions in Sweden are responsible for
providing emergency care and are entitled to collect taxes for this purpose, it is expected
that an alteration in regional division would prompt a substantial relocation of emergency
hospitals.

To find the optimal locations of hospitals and to compare them with the current situation,
location models such as the p-median model are useful. However, such models require a dis-
tance measure between hospitals and the population, and data on the population’s locations.

K. Carling · M. Han · J. Håkansson (�)
School of Technology and Business Studies, Dalarna University, 791 88 Falun, Sweden
e-mail: jhk@du.se

mailto:jhk@du.se
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The recent location literature involving computational experimentation, primarily in an ur-
ban setting, has found that Euclidean distance works well as a distance measure. However,
geographical theory suggests that Euclidean distance would work poorly in a rural setting
in which the population is typically non-symmetrically distributed in the plane and the road
network heterogeneous.

The aim of this paper is to examine whether Euclidean distance works well in rural
areas when location models are used. This paper is the first to empirically investigate the
consequences of distance measures for the optimal location of multiple service centers in
rural areas. The investigation was conducted by means of a case study and several computer
experiments using the p-median model. In the experiments, we use, in addition to Euclidean
distance, network distance and travel time as measures of distance. Moreover, we consider
the optimal allocation of service centers with two to eight hospitals for the case when the
number of served residents is just above the required number for efficient emergency care.

Spatial aggregation is known to produce errors, and consequently, a study on distance
measures must also consider this issue. Since the publication of Hillsman and Rhoda (1978),
spatial aggregation of the population’s location has attracted much interest in location liter-
ature. Spatial aggregation related to the methodological discussion of allocation of service
centers appears in a large number of articles, many of which are reviewed by Love et al.
(1988), Rushton (1989), Rogers et al. (1991), Hale and Moberg (2003) and Francis et al.
(2009). In our experiments, we also consider a low and a high level of spatial aggregation of
the population.

The paper is organized as follows: Section two presents the p-median model, and by
drawing on geographical theory and location literature, it provides a critical discussion on
the choice of distance measure. Section three presents the data and its sources, defines the
distance measures, and provides descriptive statistics of key variables. Furthermore, maps of
the Dalecarlia region put the model into an empirical context. The fourth section describes
the experimental design leading to a ‘what-if’ analysis as well as an outline of the optimiza-
tion method. Results are presented in section five, and section six presents the conclusion.

2 Location models and distance measures

Consider the problem (known as the p-median problem) of allocating P service centers to a
population geographically distributed in Q demand points such that the population’s average
or total distance to its nearest service center is minimized (e.g. Hakimi 1964; Handler and
Mirchandani 1979; Kariv and Hakimi 1979; Mirchandani 1990; Daskin 1995). Upon access
to extremely detailed data, each individual in the population makes up a demand point. In
many applications, the demand point would ideally be the individual’s residence.

Location models assist in the location problem by suggesting an optimal location of
service centers according to an objective function. For the widely used p-median model,
the objective function is taken to be the minimized total (or average) distance between the
demand points and their closest service centers. This is particularly the case if the service is
under central control as is often the case in publicly provided services such as kindergartens
and schools, museums, hospitals, courthouses, and so on. The rationale for the objective
function follows from the presumption that the service is tax-funded and that access should
be maximized for the population (see Church 2003 and references therein).

Arguments leading to other objective functions can be found elsewhere see e.g. Berman
and Krass (1998). For instance, a heterogeneous population raises the issue of whether at-
tributes such as the number of residents, average income, educational level, and so on should
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be considered. For a tax-funded service, we know of no compelling arguments for consider-
ing such factors. Therefore to maintain focus, we adhere to the objective function mentioned
above.

A crucial measure and input into the objective function is the distance between the de-
mand point and the nearest service center. Hakimi (1964) offers an original and clear struc-
ture of this issue including definitions of several key concepts. In his seminal paper, Bach
(1981) conducts a thorough investigation of how to measure distance. A number of compet-
ing alternatives are the Euclidean (shortest distance in the plane), the rectilinear (or Man-
hattan distance), the network distance (shortest distance along an existing road or public
transport network), and shortest travel time (or cost) along an existing network.

Intuitively, travel time (or cost) seems to be the most accurate measure for most settings,
yet it is infrequently employed. One explanation is the difficulty and cost associated with
collecting data on travel time. Another is the complication which arises in modeling the
inherent variation in travel time. The second best measure would presumably be network
distance while Euclidean, and rectilinear are the easiest to collect. Remarkably, Bach (1981)
found that the correlation was close to one for network and Euclidean distances when he
conducted an empirical examination of two densely populated German cities. Hence, his
results, although difficult to generalize to other contexts where location models are applied,
indicate that it does not matter whether the network or the Euclidean distance is used in
location models. This viewpoint is also found in Love et al. (1988). They reason:

Road travel between a pair of cities is seldom along a completely straight path. How-
ever, a good approximation of the average total distance between several pairs of cities
in a region can often be made by using a weighted straight-line distance function.
(Love et al. 1988, pp. 5–6)

This statement is further strengthened from a literature review of location models and dis-
tance estimations conducted by Rushton (1989).

Nowadays, the Euclidean distance is widely used in location literature as an adequate
distance measure as shown in the survey of Francis et al. (2009). In their survey, they sum-
marize some 40 published articles of which about half are executed on real data. In these
articles, the predominant distance measure is the Euclidean (the second most common mea-
sure is the rectilinear distance which is not considered in this study as it is most naturally
applied in urban areas). And as an aside, Francis and Lowe (1992) presented a case in which
contractors bidding for motor vehicle inspection stations in Florida were free to choose a
distance measure in their bids. All opted for the Euclidean.

However, one problem is that the road transport cost per unit distance is not constant. In
many areas, particularly rural areas, this unit transport cost varies significantly and this will
give rise to heterogeneous networks serving non-symmetrically distributed populations. In
this setting, there may be both a difference in length between the Euclidean and the network
distance, and a possible lack of correlation between them. Therefore it may be inappropriate
to use Euclidean distance in location models in rural areas.

3 Data and descriptive statistics

Figures 1a–c shows the Dalecarlia region in central Sweden, about 300 km northwest of
Stockholm. The size of the region is approximately 31,000 km2. Figure 1a shows major
natural structures and barriers such as topography, rivers, and major lakes in the region.
The altitude of the region varies substantially; for instance in the western areas, the altitude
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Fig. 1 Map of the Dalecarlia region showing (a) natural barriers, (b) important infrastructure and
(c) one-by-one kilometer cells where the population exceeds 5 inhabitants

exceeds 1,000 meters above sea level, whereas the altitude is less than 100 meters in the
southeast corner. Altitude variations, the rivers’ extensions, and the locations of the lakes
provide many natural barriers to where people could settle, and how a road network could
be constructed in the region.

Figure 1b shows important infrastructure in the region. The road network is divided into
small and large roads. Large roads are shown as solid black lines and small roads are indi-
cated with thin lines. Figure 1b illustrates that the road network becomes denser and more
homogeneous in areas with lower altitudes in the region’s southeast corner. In the southeast
and in the center of the region, a sparse network of larger roads supplements the smaller
roads.

In addition, Fig. 1b indicates the two current emergency hospitals. The first hospital is
located in Falun (south) and the other is located in Mora (north). Also indicated are the
locations of the three closed emergency hospitals. These five hospital locations are situated
in the region’s largest towns.

For the population of Dalecarlia, there are adjacent hospitals east, south and west (in
Norway) of the region. However, healthcare in Sweden is funded by regional taxes, and the
availability to healthcare outside the region of residency is restricted. Highly specialized
healthcare is an exception: in 1981, the national government appointed seven hospitals to
handle this type of healthcare, and therefore the location of highly specialized healthcare is
beyond the region’s decision making power. As a consequence, we do not consider interac-
tions between hospitals when conducting the experiments in Sects. 4–5.

As of December 2010, the Dalecarlia population numbers 277,000 residents. About 65 %
of the population lives in towns and villages with between 1,000 and 40,000 residents. Fig-
ure 1c shows the distribution of the residents in the region by squares of 1 km by 1 km. It
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Table 1 The distribution of the Euclidean distance (in kilometers) between the population and the nearest
hospital

Percentile Mean St. Dev.

5 25 50 75 95

2 current hospitals 2 14 28 54 90 32 24

All 5 hospitals 2 5 14 36 66 25 20

further indicates that the population is non-symmetrically distributed. The majority of resi-
dents live in the southeast corner, while the remaining residents are primarily located along
the two rivers and around Lake Siljan in the middle of the region. Overall, the region is not
only non-symmetrical, but it is also sparsely populated with an average of nine residents per
square kilometer (the average for Sweden overall is 21).

The population data used in this study comes from Statistics Sweden, and is from 2002
(www.scb.se). The residents are registered at points 250 meters apart in four directions
(north, west, south, and east). There are 15,729 points that contain at least one resident
in the region.

The Euclidean distance between the demand points and the nearest service center, i.e.
a hospital, can now be calculated. But first some notation is required. The coordinate for
the qth resident is (aq, bq) (q = 1, . . . ,Q) and the number of residents at demand point q is
denoted by Nq , where Nq = 1 since we have coordinates for each resident in Dalecarlia. The
coordinate (xp, yp) refers to the location of the pth service point (where p = 1, . . . ,P ). The
distance between the demand point and any arbitrary service point is denoted by d(p,q),
which equals

√
(aq − xp)2 + (bq − yp)2 for the Euclidean distance. The distance for the qth

demand point to the nearest service point is

d(q) = min
[
d(1, q), . . . , d(P, q)

]
.

The objective is to find a location of the P service points such that the sum of the shortest
distances of all demand points is at its minimum. We wish to minimize

fE(p̄) =
Q∑

q=1

Nqd(q).

The p̄ in the right-hand side of the equation refers to the location of the P service points to
be identified, whereas the subscript E refers to the distance measure, namely the Euclidean.
In the following, we will drop the argument p̄ in the function whenever it is obvious that we
have evaluated the function for an optimal location.

By dividing the value of the objective function fE for a given solution of service points
with the size of the population, one obtains the average Euclidean distance to the nearest
hospital. Table 1 presents statistics on the average Euclidean distance for the population in
Dalecarlia to the two current hospitals, and to all of the five hospitals.

A more refined understanding of the distance for the residents can be obtained by ex-
amining the distribution of dE(q). Table 1 also shows the distribution by means of some
percentiles. The percentiles show the population proportion having a certain Euclidean dis-
tance or shorter to its nearest hospital. For instance, with the two current hospitals, 75 % of
the population must travel 54 km or less. In comparing current hospital locations to previous
locations, one observation is that 25 % of the residents with the shortest distance to the hos-
pitals experienced a 180 % increase in the Euclidean distance while this increase was merely

http://www.scb.se
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50 % for the 25 % living furthest away from the hospital. However, the actual increase in
distance is not more than 9 (14 − 5) kilometers for the 25th percentile of the residents, but
it is as much as 18 (54 − 36) kilometers for the 75th percentile.

The Swedish road system is divided into national roads, local streets and private roads.
The local streets are managed by the municipalities. The national roads are public, funded
by a state tax, and administered by a government agency called the Swedish Transport Ad-
ministration. The national roads are of varying quality, and are, in practice, distinguished by
a speed limit. Parts of the road network in the cities are local streets usually with low and
uniform speed limits.

Figure 1b shows the national roads in Dalecarlia. The data for the road network comes
from Sweden’s Mapping, Cadastral and Land Registration Authority (www.lantmateriet.se).
The road network data describes the situation as of 2001.

The national road system in the region totals 5,437 kilometers; and the computer model
there off divided them into 1,977 digitally stored road segments. The road segments vary in
length and range from a few meters (typically at intersections) to 52 kilometers, although
the typical road segment is a couple of kilometers.

There are many possible routes to travel between any two points. However, we assume
that residents opt for the shortest route. We identified 778 nodes as being all the intersec-
tions or the ends of road segments in the region’s road network. We then created a distance
matrix with the dimension of 778 by 778 to represent the shortest network distance between
all node-pairs. The creation of the distance-matrix was conducted according to the Dijkstra
algorithm (Dijkstra 1959), and the naïve version of the algorithm was implemented by us in
the program-package R (see www.r-project.org). The naïve implementation of the Dijkstra
algorithm works in this case since the complexity is modest, and it is easy to implement.
However, Zhan and Noon (1998) recommend other implementations of the Dijkstra algo-
rithm or other shortest-path algorithms for more complex problems.

We did not have digital access to private roads and local streets. We assumed that resi-
dents can travel to the nearest node on a road network with a length equal to the Euclidean
distance, and that the network distance between a resident and a node is the Euclidean dis-
tance to the nearest node and the shortest network distance between the nearest node and
the node of interest. Potentially this might induce a bias in the network distance measure.
To ascertain the magnitude of this error, we examined a random sample of 100 residents and
retrieved their network distances to a node by using a route-finder program (www.eniro.se).
The differences in distances between our own calculations and those made by the route-
finder were insignificant and almost always less than one percent.

In line with the notation for Euclidean distance, we denote by dN(q) the qth individuals
shortest network distance to the nearest of the service points, and the objective function by
fN . We also represent heterogeneity in the road network by assuming the travel speed to be
65 km per hour on the small roads, and 90 km per hour on the large roads (see Fig. 1b). The
travel speeds of 65 and 90 km/h are, of course, a rough approximation to the actual travel
speed of residents which varies with road conditions.

Small roads are predominant and constitute 85.2 % of the network while large roads
constitute the remaining 14.8 %. We use subscript T to denote the travel time measure
(in minutes). To obtain a matrix of distances consisting of the shortest travel time between
all node-pairs, we followed the same procedure used for the network distance matrix after
converting the lengths of the road segments into travel times depending on the segment being
a large or a small road.

Table 2 presents a number of statistics for the network distance for the Dalecarlia popu-
lation to the nearest hospital, i.e. dN(q). It shows the statistics for the existing two hospitals,

http://www.lantmateriet.se
http://www.r-project.org
http://www.eniro.se
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Table 2 The distribution of the network distance (in kilometers) between the population and nearest hospital

Percentile Mean St. Dev.

5 25 50 75 95

2 current hospitals 3 18 36 64 116 40 30

All 5 hospitals 3 7 20 45 89 33 25

and, prior to the closure of three hospitals, for the five hospitals that were in existence at
that time. By comparing the statistics for the Euclidean distance and the network distance in
Tables 1 and 2, an observation can be made: the network distance is on average about 30 %
longer than the Euclidean distance.

Table 2 shows that the median resident currently travels about 36 kilometers to the nearest
hospital, whereas if all five hospitals were operational, the distance would be only 20 kilo-
meters. Yet after the closure of three hospitals, the mean distance indicates an increase in
distance to the nearest hospital by 7 kilometers. By comparing the current and previous dis-
tances to the nearest hospital for the 25th and 75th percentiles, an increase of the distance
by some 150 % and some 50 % respectively can be noted. The reduction of the number of
hospitals in the region from five to two reduced accessibility to the hospitals for the residents
of densely populated areas whereas the population in remote areas suffered comparably less,
measured as the relative difference in travel distance.

4 Experiments and optimization

In the experiment, we vary three factors. The first is the three distance measures of dE(q),
dN(q) and dT (q). The second is the number of service points (hospitals) which is varied
from two to eight. We have conducted experiments with nine and more hospitals as well, but
we found that the number of residents in the hospitals’ service areas was below the number
(about 20,000 residents) needed to efficiently run an emergency hospital (see Phelps 2003).

The third factor is the level of spatial aggregation of the demand points. The demand
points are registered 250 meters apart from each other in four directions, which is a low
level of aggregation. We spatially aggregate the population by joining demand points into
aggregated demand points in which there is 5,000 meters in four directions between them.
Note that this means that this is an aggregation by 400 times, implying substantial aggrega-
tion.

Before presenting the results, details about the optimization technique are required. Ex-
plicitly stated, the objective functionfE , in the case of P hospitals, is

fE

(
p∗) =

Q∑

q=1

min
[√

(aq − x1)2 + (bq − y1)2, . . . ,

√
(aq − xP )2 + (bq − yP )2

]
.

It is infeasible to find a tractable mathematical solution to a problem involving multiple
hospitals. Instead, we compute the objective function for all possible configurations of P

hospitals under a set of restrictions. The configuration that yields the smallest value of the
objective function is regarded as optimal. The optimum for the network and the travel time
is found in the same way thereby replacing the Euclidean distance between a resident and a
hospital by the shortest network distance and the shortest travel time.
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Fig. 2 The permissible area for
locating hospitals in the
experiments (grey shaded). The
black dots show the position of
the region’s 28 towns and
villages with 1,000 or more
residents. The grey shaded circles
illustrate their surrounding area.
The grey dots illustrate the
residents’ location in Dalecarlia

The first restriction is that the hospitals must be located at one of the 778 nodes in the
network. From an applied perspective, this is reasonable since a hospital’s function is con-
tingent on a road infrastructure. Furthermore, this restriction fixes the potential locations
such that the three distance measures are comparable. However, it is difficult to evaluate all
potential configurations since they amount to

(778
P

)
. The computational approach is therefore

divided in two steps, first into a global search and secondly into a local search.
The second restriction is that the hospitals must be located in a town or village with at

least 1,000 residents (the global search). There are 28 towns and villages of this size in the
region. Figure 2 shows their positions on the map. To do the local search for a configuration
of hospitals, we further allow for location in the surroundings of the towns or villages. The
surrounding is defined by a circle with a radius of 20 km of the town’s (or village’s) center.
Figure 2 illustrates the surroundings by grey shaded circles. The non-shaded area illustrates
the impermissible area for the location of hospitals in the experiments. There are 156 nodes
in the impermissible area which implies that the potential number of configurations is re-
duced to

(622
P

)
. Looking at Figs. 1 and 2, one notes that the restriction essentially implies

that no hospital will be located in the unpopulated mountain area. Less than 4 % of the
population lives in the impermissible area, and a location in the impermissible area would
be impractical due to both a lack of labor and a lack of other inputs for the operation of a
hospital.

The third restriction is that at the most one hospital may be located in a town or a village.
The restriction is sensible since the largest town in the region has less than 40,000 residents
and the minimum number of residents for efficient operation of one hospital is, as pointed
out, above 20,000 residents. However, Fig. 2 shows that the surroundings of many towns
and villages overlap which means that two hospitals may be very closely located.

A positive effect of imposing the restrictions is that the number of possible configurations
might be reduced such that it is feasible to evaluate all possible configurations of hospitals
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thereby avoiding a heuristic solution to the optimization problem. In the first step, global
search, we evaluate the objective function for all

(28
P

)
configurations of towns and villages

at their center. The P towns and villages with the smallest value on the objective function
are selected. In the second step, local search, we evaluate for these towns and villages the
objective function for all possible (1 × P ) vectors containing one node from each of the
P towns’ and villages’ surroundings. For example, for P = 2 with surrounding nodes a1

and b1 of the first town and nodes a2 and b2 of the second town we would also try location
pairs (a1, a2), (b1, a2), (a1, b2), and (b1, b2). We regard the vector with P nodes giving the
smallest value of the objective function as the optimal configuration of hospitals.

Our approach of finding optimal configurations of hospitals is not generally feasible.
Assume that the 622 nodes are evenly distributed in the 28 towns and villages such that
each one has 22 nodes. The number of possible vectors would then be 22P , which equals
≈ 5.5 × 1010 for P = 8. The computational burden might be much worse than this since the
nodes are concentrated in the surroundings of the bigger towns were one might expect the
hospitals to be located. In our case, some smaller remote towns with relatively few nodes
reduced the computations. For P = 5 we ended up evaluating ((

(28
5

)
) + (23 · 38 · 31 · 36 ·

11)) ≈ 1.1 × 107 combinations for the travel time distance and about twice as many for the
other two distance measures.

Some practical remarks are: the hospitals are usually located on the central node in the
towns and villages, and in most towns and villages, there are nearby competing nodes giving
almost the same value on the objective function, i.e. the objective function does not always
have a distinct minimum.

Given the computational burden for P ≥ 6 and the fact that the locations tended to be at
or close to the central node of the towns and villages, we decided to shrink the surroundings
to five km in the local search phase. As one of the worst computations, i.e. the case with
the locations of eight hospitals and travel time distance as objective function, we ended
up evaluating little more than 1.4 × 107 combinations ((

(28
8

)
) + (15 · 4 · 12 · 8 · 9 · 4 · 8 ·

7)). Furthermore, we confirmed that the optimal configuration was not at the border of the
surroundings, in which case we once again set the surrounding of the town to a radius of
20 km.

While the second and third restrictions are justified in this case, one might be interested in
how these restrictions affect the configuration. We dropped the restrictions and searched for
a configuration based on Euclidean distance and travel time distance for P = 5,7,8. With-
out the restrictions, we resorted to heuristics (classical heuristics as the p-median problem
was of small magnitude, cf. Mladenovic et al. 2007). We implemented the heuristic given
in Daskin (1995) on pages 208–221. The heuristic algorithm gave the same configuration
without restrictions 2–3 as our approach with the restrictions for P = 5,7. For P = 8, the
heuristic algorithm located a hospital in the impermissible area in the far northwest. The
service area for the hospital was less than 5,000 residents, and the value of the objective
function was the same as for our approach. Hence, restrictions 2–3 seem to be inconsequen-
tial in this case.

5 Results

The Euclidean and the travel time distances give different optimal configurations of the
hospitals in the computer experiments. The most pronounced difference was found in our
experiments with five and eight hospitals using the objective functions fE (Figs. 3a and
4a) and fT (Figs. 3b and 4b). These figures outline the configurations of the hospitals. They
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Fig. 3 Differing locations of the configurations of 5 optimally located hospitals and their service areas. In
(a) the objective function is fE , and in (b) the function is fT . The distribution of residents is indicated by
dark grey dots

Fig. 4 Differing service regions for the configurations of 8 optimally located hospitals and their service areas.
In (a) the objective function is fE , and in (b) the function is fT . The distribution of residents is indicated by
dark grey dots

also indicate the service area to each hospital, i.e. the area at which the hospital is the nearest
service point. The geographical distribution of residents is also shown in the figures.

In our experiments involving five hospitals, fT locates a hospital in the western part of
the region (Fig. 3b). The residents in this area are hindered by natural barriers and rely on
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Table 3 The population’s Euclidean and network (in parenthesis) distances in kilometers to the nearest
hospitals when they are optimally located

No. of hospitals Percentile Mean St. D

5 25 50 75 95

2 3 (4) 13 (16) 28 (36) 41 (50) 59 (78) 29 (36) 21 (26)

3 2 (3) 9 (9) 17 (24) 35 (45) 58 (78) 23 (30) 20 (26)

4 2 (3) 5 (6) 14 (19) 26 (34) 58 (76) 19 (25) 19 (24)

5 1 (2) 3 (5) 9 (13) 23 (30) 58 (76) 16 (22) 20 (25)

6 1 (2) 3 (6) 8 (11) 22 (29) 37 (52) 14 (19) 17 (21)

7 1 (2) 3 (5) 9 (11) 19 (23) 37 (49) 13 (17) 16 (19)

8 1 (2) 3 (6) 8 (11) 16 (22) 37 (50) 12 (16) 16 (19)

a sparse network of small roads in their travels eastwards. These hindrances increase travel
time which the Euclidean distance fails to account for.

The choice of objective function also affects the service areas. In our 8 hospital experi-
ment, the configuration of the hospitals is similar for fE and fT (see Fig. 4). However, the
hospitals’ service areas differ. The reason for this differentiation is that a resident’s nearest
hospital depends on whether it is identified by the Euclidean distance or by travel time. In
the case of 5 hospitals, the service areas have between 36,000 and 80,000 residents when
Euclidean distance is used in the objective function, while the service areas have between
18,000 and 136,000 residents when travel time is used. In the case of 8 hospitals, the service
areas have between 17,000 and 59,000 residents when Euclidean distance is used. When
travel time is used it has between 17,000 and 64,000 residents.

The fact that the service areas differ, despite a similar configuration of the hospitals in the
8 hospital experiment, suggests residents are not equally affected by the objective functions.
This will be examined further below.

Table 3 illustrates the distribution of dE(q) and dN(q) for experiments with a varying
number of hospitals and Table 4 illustrates the distribution of dT (q).

The following explanation focuses on the Euclidean distance. The experiment with two
hospitals is of particular interest as it can be contrasted to the current locations of two hos-
pitals (cf. Table 1). The improvement in average distance is about 10 %, since the mean is
decreased from 32 to 29 km. In fact, the median distance is unaltered at 28 km. However,
residents living far away from the two current hospitals would have greatly benefited, e.g.
the 95th percentile would be reduced from 90 km to 59 km.

The minimal objective function value fE decreases, at a decreasing rate, as the number
of hospitals is increased in the experiment as manifested by the decreasing mean distance.
However, there is no simple link between the mean distance and the distribution as described
by the percentiles. Take as an example five hospitals as opposed to eight, the average distance
is decreased by about 25 %, yet the 25 % living closest to a hospital would experience no
shortening of distance whereas the 25 % living furthest to a hospital would experience a
reduction of 30 % in distance. This example and the results presented in Table 4 further
highlight the need to examine not only the mean but also the distribution when locating
service points.

To summarize the outcome of the experiments regarding the location of hospitals, we
compute the time (in minutes) to travel between adjacent optimally located hospitals. Con-
sider as an example the first row in Table 5 and the experiment with two hospitals, the
positions of the two hospitals were obtained by the objective function fE as well as by fN ,
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Table 4 The population’s travel time (in minutes) to the nearest hospitals when they are optimally located

No. of hospitals Percentile Mean St. D

5 25 50 75 95

2 3.4 11.0 24.6 37.4 60.0 26.4 19.6

3 1.7 6.8 17.0 30.6 58.6 21.2 18.7

4 1.7 4.2 13.6 23.0 57.0 17.8 18.7

5 1.7 5.1 13.6 22.1 39.1 16.2 15.3

6 1.7 4.2 8.5 19.6 36.6 14.4 15.3

7 1.7 4.2 7.6 17.0 33.2 12.8 14.4

8 1.7 4.2 7.6 16.2 34.0 11.9 14.4

Table 5 Average travel time distance (in minutes) between closest optimally located hospitals across exper-
iments

Measure used in objective
function

No. of hospitals

2 3 4 5 6 7 8

Distance measures

Euclidean vs. network 1.7 5.1 1.8 2.8 2.9 5.3 2.2

Euclidean vs. travel time 1.7 5.7 2.7 6.2 3.0 6.3 3.9

network vs. travel time 0 0.5 0.9 4.8 2.1 2.0 2.5

and the closest pairs of hospitals from the two experiments are compared. In this case, the
position of the northern hospital differed by 3.4 minutes in the travel time-network, whereas
the southern hospitals were at the same location giving 0 minutes travel time between. The
average difference is 1.7 minutes.

Consider as another example the experiment with 5 hospitals, and the Euclidean distance
versus travel time where the positions of the hospitals differ by 6.2 minutes on average.
6.2 minutes is a significant difference considering that the average travel time to the nearest
hospital for the population was found to be 16.2 minutes (cf. Table 4). Clearly, hospital
location is quite sensitive to the distance measure (see also Figs. 3a–b).

The fact that the distance measures in some experiments give substantially different loca-
tions of hospitals does not imply that the population would be greatly affected by the choice
of measure. The population was also not greatly affected by the amount of aggregation. We
complement Table 5 by computing how the travel time distance to the nearest hospital for
the population is affected by the location obtained from the different objective functions.

Table 6 shows the mean travel time for residents along the travel time-network to the
nearest hospital. The configuration of hospitals is obtained using the three different distance
measures as well as low (the demand points 250 meters apart) and high (the demand points
5000 meters apart) levels of spatial aggregation. Table 5 showed that the locations of the two
hospitals were insensitive to the choice of distance measure. Not surprisingly, the residents’
travel time to their nearest hospital (the mean time increases by 1.1 % if fE is compared
with fT ) is similar in Table 6. The use of fE causes an increase in travel time by about 4 %
with a range of 1.1 % to 7.0 %, depending on the number of hospitals. Spatial aggregation of
the population was inconsequential, and upon seeing the results, we ignored the experiments
for 4, 6 and 7 hospitals. This matches similar conclusions regarding data aggregation and
p-median location problems found in an extensive study by Murray and Gottsegen (1997).
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Table 6 Mean travel time (in minutes) for the population to the nearest hospital, where the hospital’s location
is obtained under three different objective functions and two levels of spatial aggregation

Measure used in objective
function

No. of hospitals

2 3 4 5 6 7 8

Low spatial aggregation

Euclidean 26.7 22.0 18.6 17.2 15.0 13.7 12.4

network 26.4 21.2 18.1 16.4 14.5 12.9 11.9

travel time 26.4 21.2 17.8 16.2 14.4 12.8 11.9

High spatial aggregation

Euclidean 27.1 22.5 16.3 11.9

network 26.5 21.6 16.3 11.9

travel time 26.5 21.1 16.2 11.9

Table 7 The Spearman rank correlation of the residents’ distances in the travel time-network to nearest
hospital where the configuration of hospitals is obtained under different objective functions and levels of
spatial aggregation. Correlations below 0.9 are marked with bold text

Measure used in objective
function

No. of hospitals

2 3 4 5 6 7 8

Distance measures

Euclidean vs. network 0.99 0.95 0.99 0.98 0.95 0.91 0.95

Euclidean vs. travel time 0.99 0.94 0.98 0.84 0.96 0.86 0.87

Network vs. travel time 1.00 0.99 0.99 0.83 0.96 0.95 0.91

Spatial aggregation

Euclidean vs. Euclidean, aggr. 0.99 0.99 0.97 0.89

Network vs. network, aggr. 0.99 0.99 0.99 0.91

Travel time vs. travel time, aggr. 0.99 0.99 0.99 0.83

Figures 3–4 illustrate that the configuration of hospitals and their service areas differ by
distance measure. Consequently, the distance measure might affect the resident’s distance to
a hospital. Table 7 shows the Spearman rank correlation (see Wackerly et al. 2002) between
the travel time-network distances to the nearest hospital when the location of the nearest
hospital is obtained under different objective functions. If all residents were equally affected
by the choice of objective function, then the correlation would be one.

Again, we note the experiments with locating two hospitals. Tables 5–6 show that the
configuration, and consequently, the residents’ distance to a nearest hospital is insensitive to
the objective function. The correlations in the experiments with two hospitals are next to one
in Table 7. This implies that a resident would travel the same route on the network irrespec-
tive of the objective function applied. However, this is not the case for all experiments. The
choice of objective function between travel time and network has the most extreme conse-
quence on a resident’s traveling distance and traveling route with a correlation of only 0.83
for the 5 hospitals experiment and 0.91 for the 8 hospitals experiment. Clearly, the choice of
objective function affects different parts of the population differently.
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6 Conclusion

Does the Euclidean distance work well when the p-median model is applied in non-
homogeneous rural areas? This case study answers no. We find that the Euclidean distance
leads to sub-optimally located hospitals with two main consequences. The first is that the
residents’ travel time to a nearest hospital is increased. The second is that the Euclidean dis-
tance obscures the hospitals’ service areas, which may cause planning errors for healthcare
managers and infrastructure authorities.

If at all, we expected the discrepancy between using the Euclidean distance and the net-
work distance measures to rise with an increasing number of service points. However, the
computer experiments did not support this expectation. Hence, it seems unforeseeable in
any given application as to whether the outcome of the location models using the Euclidean
distance or a network distance will differ. Of course, we stopped the computer experiments
at P = 8. In many location problems, this is a small number of service points.

In our computer experiments, we considered two levels of spatial aggregation. Firstly,
the spatial aggregation did not alter the conclusion regarding the working of the Euclidean
distance for the p-median model. Secondly, the effect of spatial aggregation on the loca-
tion problem considered here was inconsequential compared with the choice of distance
measure. However, spatial aggregation did mask the residents’ travel path to their nearest
hospital, thereby potentially causing planning errors.

In essence, the objective function used in this study is to minimize the population’s av-
erage distance to its nearest hospital. The computer experiments showed that the change in
the mean distance for different configurations of service points is a very crude description
of how the population is affected. We suggest that the mean is complemented by percentiles
to obtain a better understanding of how sub-populations are affected by competing configu-
rations of service points.

We were originally interested in the location of emergency hospitals in a Swedish region
called Dalecarlia. We primarily found that an increased number of hospitals would greatly
improve accessibility to hospitals for the residents, but also that the current configuration is
sub-optimal from a traveling point of view.

This study leaves various topics to be investigated further, among which is the choice of a
region for experimentation. Given that this study leads to a conclusion in contrast to the cur-
rent consensus in the computational location literature, it is important that more case studies
are conducted in rural areas. Hopefully, such studies could consider the location of many
service points, consider a more refined and heterogeneous network, and elaborate with com-
peting objective functions. An alternative objective function known as the p-center model is
to minimize the maximum distance for the population to the nearest service point. For emer-
gency care, the p-center objective function is not far-fetched. Such an objective function is
very sensitive to the skewness of the distribution. Consequently, if we were to conduct fur-
ther experiments using the p-center model then we would expect to find a substantial impact
of the choice of distance measure on the location of hospitals.
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Abstract: The p-median model is used to locate P facilities to serve a geographically 

distributed population. Conventionally, it is assumed that the population patronize the 

nearest facility and that the distance between the resident and the facility may be 

measured by the Euclidean distance. Carling, Han, and Håkansson (2012) compared two 

network distances with the Euclidean in a rural region with a sparse, heterogeneous 

network and a non-symmetric distribution of the population. For a coarse network and P 

small, they found, in contrast to the literature, the Euclidean distance to be problematic. 

In this paper we extend their work by use of a refined network and study systematically 

the case when P is of varying size (2-100 facilities). We find that the network distance 

give as good a solution as the travel-time network. The Euclidean distance gives 

solutions some 2-7 per cent worse than the network distances, and the solutions 

deteriorate with increasing P. Our conclusions extend to intra-urban location problems. 
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1. Distance measures in the p-median model 

Consider the problem of allocating P facilities to a population geographically distributed 

in Q demand points such that the population’s average or total distance to its nearest 

service center is minimized. Hakimi (1964) considered the task of locating telephone 

switching centers and showed that, in a network, the optimal solution of the p-median 

model existed at the nodes of the network. Thereafter, the p-median model has come to 

use in a remarkable variety of location problems (see Hale and Moberg, 2003).  

However, there are three, main challenges with applying the p-median model on a 

specific location problem. The first is computational due to the combinatorial feature of 

the problem. Enumeration of all possible locations, in search of the optimal one, is a 

formidable task even for P and Q small. Hence, much research has been devoted to 

efficient (heuristic) algorithms to solve the p-median model (see Handler and 

Mirchandani 1979, Daskin 1995, and Murray and Church 1996 as examples).   

The second challenge is the aggregation error arising from the common practice of 

aggregating demand points. Hillsman and Rhoda (1978) analysed the errors that may 

arise in measuring the distance between the population to be served and the facilities. 

One source of error comes from the aggregation of the population in an area to a single 

point, where the point shall represent the position of all members of the population in the 

area. Their research spurred an on-going investigation of this error and techniques to 

reduce the error (see Francis, Lowe, Rayco, and Tamir 2009 and references therein). 

The third challenge is to measure the distance between the demand point and the nearest 

service center. In his seminal paper, Bach (1981) conducted a thorough investigation of 

how to measure distance. A number of competing alternatives are the Euclidean (shortest 

distance in the plane), the rectilinear (or Manhattan distance), the network distance 

(shortest distance along an existing road or public transport network), and shortest travel 

time (or cost) along an existing network. Remarkably, Bach (1981) found that the 



 

- 3 - 

 

correlation was close to one for network and Euclidean distances when he conducted an 

empirical examination of two densely populated German cities. Hence, his results 

indicate that it does not matter whether the network or the Euclidean distance is used as 

distance measure. After the publication of Bach (1981), there is little research on the 

choice of distance measure. 

Carling, Han, and Håkansson (2012) compared the Euclidean distance with a coarse road 

network distance, and travel-time in a two-speed network. They compared the outcome 

of the p-median model for the three distance measures for a problem where P was varied 

from 2 to 8 facilities (Q was large and the population spatially disaggregated). They 

concluded that the Euclidean distance was problematic as it led to suboptimal location of 

facilities and a distorted understanding of the facilities service area. Spatial aggregation 

was however found to be inconsequential. 

Carling et al (2012) was limited in scope with regard to the p-median model as it studied 

the choice of distance measure for P small in a rural setting with a coarse representation 

of the network. The aim of this paper is to test whether their conclusion for the p-median 

model is of more generality. We do this by systematically vary P from small to medium 

in size (2-100 facilities). The experiment is conducted on a refined network in Dalecarlia 

in Sweden with more than 1,500,000 nodes in which the speed limit for a road segment 

varies between 30 km/h to 110 km/h. Moreover, there are more than 15,000 demand 

points representing the population with an error of at the most 175 meters. 

The paper is organized as follows: Section two presents the empirical setting and the 

distance measures. Section three gives the computational approach. Section four presents 

the results. And the fifth section concludes. 

2. The empirical setting: Geography and Network 

Figure 1 shows the Dalecarlia region in central Sweden, about 300 km northwest of 

Stockholm. The size of the region is approximately 31,000 km
2
. Figure 1a gives the 
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geographical distribution of the region
1
. As of December 2010, the Dalecarlia population 

numbers 277,000 residents. About 65 % of the population lives in 30 towns and villages 

with between 1,000 and 40,000 residents, whereas the remaining third of the population 

resides in small, scattered settlements. The figure shows the distribution of the residents 

in the region by squares of 1 km by 1 km. It indicates that the population is 

non-symmetrically distributed, and also sparsely populated with an average of nine 

residents per square kilometer (the average for Sweden overall is 21). 

 

 

 

                                                        
1 The population data used in this study comes from Statistics Sweden, and is from 2002 (www.scb.se). The residents 

are registered at points 250 meters apart in four directions (north, west, south, and east). There are 15,729 points that 

contain at least one resident 

in the region. 
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Figure 1: Map of the Dalecarlia region showing (a) one-by-one kilometer cells where the 

population exceeds 5 inhabitants, (b) landscape, (c) national road system, and (d) national road 

system with local streets and subsidized private roads.  

Figure 1b shows the landscape and gives a perception of the geographical distribution of 

the population. The altitude of the region varies substantially; for instance in the western 

areas, the altitude exceeds 1,000 meters above sea level, whereas the altitude is less than 

100 meters in the southeast corner. Altitude variations, the rivers’ extensions, and the 

locations of the lakes provide many natural barriers to where people could settle, and 

how a road network could be constructed in the region. The majority of residents live in 

the southeast corner, while the remaining residents are primarily located along the two 

rivers and around Lake Siljan in the middle of the region. 

Figure 1c shows the national road network in the region. The Swedish road system is 

divided into national roads and local streets that are public, and subsidized and 

non-subsidized private roads and in Dalecarlia the total length of the road system is 

39,452 km.
2
 The non-subsidized private roads is the most extensive network amounting 

                                                        
2 The road networks are provided by the NVDB (The National Road Data Base). NVDB was formed in 1996 on behalf 

of the government and now operated by Swedish Transport Agency. NVDB is divided into national roads, local road 
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to more than 50 per cent of the country’s roads and it is primarily built and maintained by 

companies, and in Dalecarlia for the purpose of transporting timber. The national road 

system in Dalecarlia totals 5,437 km with roads of varying quality that are, in practice, 

distinguished by a speed limit. 

Table 1: The distribution of speed limits (km/h) in the public road network of Dalecarlia. 

 Speed limit 

 -30 40 50 60 70 80 90 100- 

Proportion (%) 9 3 31 2 24 19 10 2 

Figure 1d adds the local streets and subsidized private roads to the national road network 

with an additional extension of 14,803 km. This network is very dense compared with the 

national roads alone. The reason to also depict the subsidized private roads is that they 

provide an opportunity for the residents to reach the public roads. 

The speed limit varies between 30 to 110 km/h in the region’s road network. Table 1 

gives the proportion of road-kilometers by speed limit for the public road network. The 

speed limit of 70 km/h is default and the national roads usually have a speed limit of 70 

km/h or more. The road network in the towns consists mostly of local streets with low 

and uniform speed limits (30-50 km/h). Han, Håkansson, and Rebreyend (2012) used the 

p-median model on this road network, and they noted that it is imperative to include local 

streets unless P is small.  

3. The p-median model and computational aspects 

The problem is to allocate P facilities to the population geographically distributed in Q 

demand points such that the population’s average or total distance to its nearest facility is 

minimized. The p-median objective function
3
 is                  , where N is the 

                                                                                                                                                                        
and streets. The national roads are owned by the national public authorities, and the construction of them funded by a 

state tax. The local roads or streets are built and owned by private persons or companies or by the municipalities. Data 

was extracted spring 2011 and represents the network of the winter of 2011. The computer model is built up by about 

1.5 million nodes and 1,964,801 road segments.  
3 Arguments leading to other objective functions can be found elsewhere see e.g. Berman and Krass (1998) and 

Drezner and Drezner (2007). For instance, a heterogeneous population raises the issue of whether attributes such as the 
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number of nodes, q and p indexes the demand and the facility nodes respectively, qw  

the demand at node q, and qpd  the shortest distance between the nodes q and p.
4
 

The shortest Euclidean distance,    
  say, is simply the distance in the plane between the 

nodes q and p. To find the shortest network distance and shortest travel-time distance, 

   
  and    

  say, between the nodes q and p is trickier since there may be many 

possible routes between the nodes in a refined network. We implemented the Dijkstra 

algorithm (Dijkstra 1959) and retrieve the shortest distance from the center to the 

residents in each evaluation of the objective function. To obtain the travel-time we 

assumed that the attained velocity corresponded to the speed limit in the road network. 

The p-median problem is NP-hard (Kariv and Hakimi, 1979). Han et al (2012) discussed 

and examined exact solutions to the problem as well as heuristic solutions. They 

advocated the simulated annealing algorithm for the problem at hand and we comply. 

This randomized algorithm is chosen due to its easiness to implement and the quality of 

results in case of complex problems. Most important, in our case, the cost of evaluating a 

solution is high and therefore we prefer an algorithm which keeps the number of 

evaluated solutions low. This excludes for example algorithms such as Genetic Algorithm 

and some extended Branch and Bound. Moreover, we may have good starting points 

obtained from pre-computed trials. Therefore a good candidate is Simulated Annealing 

(Kirkpatrick, Gelatt, and Vecchi, 1983). 

The simulated annealing (SA) is a simple and well described meta-heuristic. Al-khedhairi 

(2008) gives the general SA heuristic procedures. SA starts with a random initial solution 

s and the initial temperature    and the temperature counter    . The next step is to 

improve the initial solution. The counter     is set and the operation is repeated until 

   . A neighbourhood solution    is evaluated by randomly exchanging one facility 

                                                                                                                                                                        
number of residents, average income, educational level, and so on should be considered. To maintain focus, we adhere 

to the objective function mentioned above. 
4 Facilities are always located at a node in line with the result of Hakimi (1964). Residents are assumed to start the 

travel at their nearest node, and reaching it by a travel of the Euclidean distance. This assumption is of no importance 

in this dense road network.  
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in the current solution to the one not in the current solution. The difference,  , of the two 

values of the objective function is evaluated. We replace s by    if    , otherwise a 

random variable          is generated. If         , we still replace s by   . The 

counter        is set whenever the replacement does not occur. Once   reaches L, 

       is set and T is a decreasing function of t. The procedure is stopped when the 

stopping condition for T is reached. 

The main drawback of the SA is the algorithms sensitivity to the parameter settings. To 

overcome the difficulty of setting efficient values for parameters like temperature, an 

adaptive mechanism is used to detect frozen states and if warranted re-heat the system. In 

all experiments, the initial temperature was set at 400 and the algorithm stops after 2000 

iterations. Each experiment was computed three times with different, random starting 

points to reduce the risk of local solutions. Among the three trials, we selected the 

solution with the lowest value of the objective function. The three solutions for each 

experiment varied slightly, but in an identical manner across the experiments. Hence, for 

the comparison of distance measure this choice is inconsequential. 

Our adaptive scheme to dynamically adjust temperature work as follow: after 10 iteration 

with no improvement the temperature is increased according to                , 

where   starts at 0.5 and is increased by 0.5 each time the system is reheated. As a result, 

the SA will never be in a frozen state for long. The temperature is decreased each 

iteration with a factor of 0.95. The settings above are a result of substantial, preliminary 

testing on this data and problem. In fact, some of the solutions were compared to those 

obtained by alternative heuristics. 

The number of facilities is varied in the experiments. We consider locating small to 

medium number of facilities,          . The location problem differs as a 

consequence, not only because P is varied. Figure 2a shows the solution for    . The 

facilities lay far apart in the region and interurban travelling on the national road network 

is required for a large proportion of the population. Hence, in this case the rural  
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Figure 2: Solution of the p-median model in Dalecarlia for 5 and 100 facilities. (a) the solution of 

five facilities and the national road network. (b) the solution of 100 facilities and the road network 

with both national roads and local streets, focusing on the downtown area of the city of Falun.  

 

landscape with its natural barriers and so forth affects the solution indirectly since it has 

affected the infrastructural setting of national roads and the location of settlements. 

Consider on the other hand the experiment with      . 

Figure 2b shows the solution in the downtown area of the largest city in the region – 

Falun. There are five facilities located in this area and the population travels to the 

nearest facility primarily on the local streets in the city. In conclusion, the experiments 

for which P are small characterizes a p-median problem on a rural region with a 

non-symmetrical distribution of the population and a highly heterogeneous road network. 

For the experiments with a larger P, the setting resembles a problem in an urban area. 

Consequently, the results of the experiments may have some external validity outside this 

region which is under study. 
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4. Results 

In this section, we take, as the benchmark, the solution to the p-median model when the 

travel-time is used as distance measure. Table 2 shows the average travel-time in seconds 

for the residents to their nearest facility in the experiments with P varying. For     

the average trip is about 25 minutes, a value that decreases to slightly more than 3 

minutes for      . The solutions based on the network distance are virtually identical 

to those of the travel-time distance as can been seen in Table 2 by comparing the average 

travel-time for the two measures. To complement the experimental results given in 

seconds, the travel distance in km on the road network for the residents to the nearest 

facility is shown on the last row of the table. To sum up, the finding is that the network 

distance, not accounting for the quality in the road network, produces the same solution 

to the p-median model as an elaborated distance measure that accounts for those aspects.  

Table 2: The residents’ average travel time in seconds to the nearest facility. The travel-time is 

evaluated for the solutions of the p-median model for the travel-time and the network measures. 

Last row gives the average network distance to the nearest facility.  

 P 

Measure 2 5 8 10 15 20 25 30 35 40 45 50 75 100 

Travel-time 1546 973 704 617 505 444 387 348 323 301 290 273 224 198 

Network 1540 988 704 618 505 444 387 348 325 301 296 272 224 198 

Network (km) 33.7 20.2 13.7 12.1 9.2 7.4 6.6 6.0 5.4 5.1 4.7 4.5 3.6 3.2 

Solutions for the p-median model was also obtained based on the Euclidean measure, and 

the travel-time between the residents and their nearest facility computed. Generally, these 

solutions increased the residents’ travel-time. Figure 3 shows a relative comparison 

between the Euclidean solution and the travel-time solution. As an instance, for    , 

the average travel-time was found to be 1,630 seconds for the Euclidean solution and 

1,546 seconds for the travel-time solution, giving a relative difference of 5.4 per cent. 

The relative difference was 3.6 per cent on average ranging from 0.0 per cent to 7.0 per 

cent. 
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Figure 3: The relative difference between the solutions of the p-median model based on the 

Euclidean and the travel-time measure of distance.  

In Figure 3, a regression line is imposed as a function of P. The significant estimate of 

the intercept is 2.6 and the estimate of the regression coefficient is 0.03, where the 

regression coefficient is borderline significant with a p-value of 0.06. Taken at face-value, 

the regression coefficient implies a one percentage point worsening of the Euclidean 

solution for each increment of P of 30 facilities. To conclude, the Euclidean measure is 

potentially problematic since it may provide solutions to the p-median problem that leads 

to excessive travel times and distances for the population. 

5. Conclusions 

In this study we have examined whether or not the distance measure is of importance 

when the p-median model is used to locate facilities. To do this, we have systematically 

varied P from small (   ) to medium size (     ) in a very dense network with 

attributed speed limits. 
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Two main conclusions can be drawn from this investigation. The first is that the 

Euclidean distance provides solutions to the p-median model that lead to excessive 

travel-time for the residents of as much as 7 per cent. The excess seems to increase with 

the number of facilities to locate. 

The second conclusion is that the network distance provided equally good solutions to 

the p-median problem as an elaborated network. In spite of the fact that the elaborated 

network accounted for heterogeneity in the network due to variation in speed limits and 

the implied variation in road quality. This finding is startling as the elaborated network 

showed substantial heterogeneity in terms of speed limits and implied road quality. It 

should be noted however that the network studied here is very refined and that the 

findings may not extend to a sparse network. 

As a final remark, note that the variation in P has some implications for interpreting the 

findings for a rural setting. For P small, the setting is a problem of locating facilities in 

inter-urban environment where a large fraction of the population travels between towns 

to patronize the nearest facility. For the larger values of P, it is a setting where multiple 

facilities are located within the towns and the residents travel primarily on local streets 

within the towns. Hence, we assert that the findings bear some relevance for location 

problems in urban settings, in addition to rural ones.  
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How do different densities in a network affect the optimal location of service centers? 

Authors1: Mengjie Han2, Johan Håkansson, and Pascal Rebreyend 

Abstract: The p-median problem is often used to locate p service centers by minimizing 

their distances to a geographically distributed demand (n). The optimal locations are 

sensitive to geographical context such as road network and demand points especially 

when they are asymmetrically distributed in the plane. Most studies focus on evaluating 

performances of the p-median model when p and n vary. To our knowledge this is not a 

very well-studied problem when the road network is alternated especially when it is 

applied in a real world context. The aim in this study is to analyze how the optimal 

location solutions vary, using the p-median model, when the density in the road 

network is alternated. The investigation is conducted by the means of a case study in a 

region in Sweden with an asymmetrically distributed population (15,000 weighted 

demand points), Dalecarlia. To locate 5 to 50 service centers we use the national 

transport administrations official road network (NVDB). The road network consists of 

1.5 million nodes. To find the optimal location we start with 500 candidate nodes in the 

network and increase the number of candidate nodes in steps up to 67,000. To find the 

optimal solution we use a simulated annealing algorithm with adaptive tuning of the 

temperature. The results show that there is a limited improvement in the optimal 

solutions when nodes in the road network increase and p is low. When p is high the 

improvements are larger. The results also show that choice of the best network 

depends on p. The larger p the larger density of the network is needed.   

Key words: location-allocation problem, inter-urban location, intra-urban location, 

p-median model, network distance, simulated annealing heuristics. 
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1. Introduction 

To have an as accurate representation of a road network as possible is important for 

many researchers and planners using the network for transportation and planning 

optimization. The focus is mainly on how the roads are used and maintained. Less focus 

is given to using the road network to locate facilities in order to minimize 

transportation. In this study we focus on the inter-urban and the intra-urban location 

allocation problem in relation to the density of the road network. To do so we turn to 

the p-median problem.  

The p-median location problem is well-studied (Farahani et al., 2012). However, most 

studies are not based on real road distances. Francis et al. (2009) made an explicit 

review of the p-median location problem. Among the 40 published articles, about half 

of them are studies based on real data. From that survey it is also obvious that almost 

all of the distance measures are Euclidean distance and rectilinear distance. In a recent 

study by Carling et al. (2012) the performance of the p-median model was evaluated 

when the distance measure was alternated between Euclidian, network and travel time. 

It was shown that for region with an asymmetrical distributed population and road 

network due to natural barriers the choice of distance measure has affected the optimal 

locations, and that the use of Euclidian distance leads to sub optimal solutions.   

The work in this study follows the work of Carling et al. (2012). In Carling et al. (2012) 

the road network was limited to 1579 nodes and there was no analysis done of the 

effects on the suggested solutions by varying the number of nodes in the road network. 

However, differences in accuracy of the road networks could also influence the optimal 

location of service centers.  

In a discrete location allocation problem complexity varies due to the number of 

demand points, number of service centers to locate and/or number of nodes in a 

network. However the p-median model is NP-hard (Kariv and Hakimi, 1979) and so 

aggregation has often been used to reduce the size of the problem. In our study we use 
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a real world road network which consists of about 1.5 million nodes. To our knowledge 

there is no study which has used such a large real world network density applied on a 

discrete p-median problem. Based on that, the aim of this paper is to analyze how the 

optimal location solutions vary, using the p-median model, when both the number of 

service centers and the density of the road network are alternated. The investigation is 

conducted by the means of a case study in a region of Sweden, Dalecarlia. The 

population is distributed at 15,000 weighted demand points. The road network we 

elaborate is from the Swedish digital road system: NVDB (The National Road Database) 

and it is administrated by the Swedish Traffic administration. We start with 500 

candidate nodes to locate on and increase them in steps up to 67,000. 

To evaluate the effects of different road networks on the optimal location solutions in 

different situations we compare the results from the experiments in which we have 

alternated both the density in the road network and the number of service centers that 

are located within Dalecarlia. In this study we simulate an inter-urban location problem 

and both inter-urban and intra-urban location problems. The location of emergency 

hospitals and courts is typical inter-urban location problems in a region like Dalecarlia. 

To locate for instance high schools and post offices could be seen as typical inter-urban 

as well as intra-urban location problems. In this study we therefore systematically 

alternate P between 5 and 50.   

To do this, several computer experiments using the p-median model were 

implemented. Since the exact optimal solution is difficult to obtain, the experiments are 

conducted by use of a simulated annealing algorithm.  

The remaining parts of this paper are organized as follows. In section 2 we discuss some 

relevant literature. In section 3 we present the data used. In the fourth section we 

present the simulated annealing methods used. In section five we present and 

comment results and in section six we have a concluding discussion.  

2. Literature Review 
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The discrete p-median model was first introduced by Hakimi (1964). The goal with the 

model is to find p service centers which minimize the summed distances between 

demands and their nearest centers. This problem can be formulated as follows. 

Minimize             
 
   

 
   , subject to        

    and        
   , where   is 

the value of objective function.   is the number demand locations.    is the weight of 

each demand location.     is the distance from demand location   to the center  .     

is a dummy variable: taking 1 if location   is allocated to center  . 

Since we model our problem as a p-median problem, our objective function will be to 

minimize the value   which is the sum of all network distances between a person and 

the closest service center. (    is one for the closest location in our case). By dividing 

this value by the total population, we obtain the average distance between a person 

and its closest service center. 

To find the optimal location for p-service centers in relation to the demand using the 

p-median model is NP-hard, Kariv and Hakimi (1979). The complexity depends both on 

the number of service centers to be located, the number of demand points, as well as 

on how distance is measured.  

Although Euclidean distance is most widely used, the network distance is in most cases 

more accurate in measuring the travel distance between two points (e.g. Carling et al. 

2012). Further, a refined network should give the possibility to more accurate distance 

measures between two points compared to a sparser network. There are a few studies 

which evaluate network effects on optimal locations. Peeters and Thomas (1995) 

examined the p-median problem for different types of networks by changing the nature 

of the links. They found that there was a difference in optimal solutions when the links 

were changed but they registered no differences in computational effort.  

Morris (1978) tested the linear programming algorithm for 600 random generated data 

sets.  He generated a benchmark to simulate the effect of a road network by adding a 
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random noise to the Euclidian distance. His conclusion was that regardless whether he 

was using the pure Euclidian distance or the simulated networks he was able to solve 

the problem, implying that the choice of distance measure is not significant. However, 

the data set were very small and it was only a simulated network with values close to 

the Euclidian distance. Further he did not really evaluate the effect of the choice of the 

distance measure to the quality of the solutions.  

Schilling et al. (2000) examined the Euclidean distance, network distance and a 

randomly generated network distance. Their conclusion is that it is much easier for the 

Euclidean and network to obtain the optimal solution and with less computational 

effort. However, the problem is small scale and they did not provide the effect of 

network with different numbers of nodes in the networks. In our study we are dealing 

with large networks and we systematically alternate the number of nodes in it to 

evaluate the quality in the optimal solutions. None of the previous studies provided any 

analysis of network aggregation.  

In a recent study Avella et al. (2012) tested a large size p-median problem using a new 

heuristic based on Lagrangean relaxation. The number of nodes varies from 3,038 to 

89,600. They compared their computational results to the results found by Hansen et al. 

(2009) under 4 instance sets (from Birch and TSP library). The largest data set is Birch 1. 

The Birch data set are synthetically generated, designed to test clustering algorithms. 

Birch 1 and 3 differ in two significant ways. Birch 1 is the largest data set used (89,600 

nodes) and it consists of symmetrical distributed demand points and nodes in the 

network which are also organized in tight clusters. Birch 3 consists of up to 20,000 

nodes and the demand points and the nodes in the network are more asymmetrically 

distributed and the clusters also vary more in their characteristics. They found that the 

new heuristic is fast and efficient. They also showed that the quality of the optimal 

solutions was quite different when Birch 1 was used compared to when Birch 3 was 

used. Instances of type Birch 3 also took longer computing time to be solved. Larger 



 

- 6 - 

 

instances exhibit worse results. However, they did not consider a real world network, 

when the number of nodes in the network is alternated systematically.  

3. Data 

3.1 Demand Points and Service Centers 

The demand points represent the distribution of the population’s residence in 

Dalecarlia. In this study we use the population in 2002. The figures are public produced 

and controlled data from Statistics Sweden (www.scb.se). The populations’ residents 

are registered on 250 meter by 250 meter squares. We generalize each square is to its 

central point. Each point is then weighted by the number of people living in each 

square. The populations’ residence location is represented by 15,729 weighted points. 

In total 277,725 lived in Dalecarlia during the study year. The distribution of the 

residents is shown in Figure 1a. The figure illustrate that the population in the region is 

asymmetrically distributed. The majority of residents live in the southeast corner, while 

the remaining residents are primarily located along the county’s major rivers and lakes. 

Overall, the region is not only non-symmetrical distributed, but it is also sparsely 

populated with an average of nine residents per square kilometer (the average for 

Sweden overall is 21). 

Figure 1b shows some important features of the natural landscape in Dalecarlia. Firstly 

it is shown that the altitude in Dalecarlia vary a lot. From the south east corner with 

altitude below 200 the altitude increase in general towards north east. Secondly it is 

shown that a major river (Dalecarlia River) and some large lakes also act as natural 

barriers. Clearly, when comparing the distribution of the population (Figure 1a) with the 

natural barriers (Figure 1b) there is a correlation.  

Concerning the service centers, in this study, we search for optimal locations for p equal 

5, 10, 15, 20, 25 30, 35, 40, 45 and 50.  

3.2 The Road Network 
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Figure 1. The distribution of the population on 1 by 1 km squares (a) and natural 

landscape (b) in Dalecarlia. 

The road network used is the 2011 national road database (NVDB) for Dalecarlia. NVDB 

was formed in 1996 on behalf of the government. It is organized and updated by the 

National Transport Administration (Trafikverket) in Sweden. In total the road network 

for Dalecarlia contains about 1.5 million nodes and 1,964,801 segments. The total 

length is 39,452 kilometers. The average distance between the nodes in NVDB is about 

40 meters. The minority of the nodes is nodes in intersections or at points where roads 

starts or begin.  Most nodes describe the geographical shape of the road and by that 

they give a precise description of the length of the road. We use this network to 

calculate the distance between the demand points and the closest service center. To do 

so we use the Euclidian distance to identify the closest node on the road network. Then 

we add the shortest network distance. To find the shortest network distance the 

Dijkstra algorithm has been used (Dijkstra 1959).  
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Figure 2. All roads in a dense network with 67,020 candidate nodes (a) and all roads in a 

sparse network with 1,994 candidate nodes (b) in Dalecarlia 

To identify the candidate nodes to locate on we select one node in each 500 by 500 

meter square in which the roads pass through. By reducing the number of nodes within 

a square an in-built location error occurs. However by selecting the center of the square 

as the representative node the maximum location error due to this could be 354 meters 

in Euclidian metric.  Finally we used at the most 67,020 nodes in the road network as 

candidate nodes to locate on. (see Figure 2a).   

NVDB is divided into 10 different categories according to the quality of the roads (see 

Table 1). To alternate the density in the road network we used those road classes. In 

Dalecarlia there is just one road (class 0) which is a European highway. For this reason, 

class 0 roads are merged into class 1 in this study. By just taking into account the largest 

roads (class 0 and 1) the set of candidates to find an optimal location of a service center 
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are as many as about 2000 nodes distributed in a rather sparse network (see Figure 2b).  

This is still quite large; so to decrease the density in the road network further we add 

two new classes which consist of 500 and 1000 candidates to locate service centers in. 

We select these candidates randomly from candidates in class 0 and 1. From Table 1 we 

can see that average distance between the candidate nodes varies rather little when 

the road classes 0 to 9 are concerned. However, the average distances between 

candidate nodes become significant longer when the density in the road network is 

decreased further.  

Table 1. Number of candidate nodes, road length and average road distance between 

candidate nodes with different road classes on the road network in Dalecarlia.   

Road classes Number of nodes 
Length 

(km) 

Meters between 

Candidate nodes 

0 to 9 67020 39454 588 

0 to 8 45336 23086 509 

0 to 7 20718 10964 529 

0 to 6 12552 5631 449 

0 to 5 12417 5479 441 

0 to 4 6735 2923 434 

0 to 3 3926 1725 439 

0 to 2 2909 1299 446 

0 to 1 1994 883 443 

0 to 1 (randomized) 1000 883 883 

0 to 1 (randomized) 500 883 1766 

 

Figures 2a and 2b illustrate that the road network becomes denser and more 

homogenous in areas in the region’s southeast corner. In the southeast and in the 

center of the region, a sparse network of larger roads supplements the smaller roads. 

From Figure 2a it is obvious that the smaller local roads and streets are oriented to the 

larger roads. It is also evident that the smaller roads make the road network more 

homogenous when it comes to its distribution in the region.  



 

- 10 - 

 

4. Simulated Annealing 

 4.1 Algorithm 

Since the p-median problem is NP-hard, for large number problems, the exact optimal 

solution is difficult to obtain. That is why there are only a few studies examining the 

exact solutions (Hakimi, 1965; Marsten, 1972; Galvão, 1980; Christofides and Beasley, 

1982). Instead most studies regarding p-median problem use heuristics and 

meta-heuristics (e.g. Kuehn and Hamburger, 1963; Maranzana, 1964; Rahman and 

Smith, 1991; Rolland et al., 1996 Crainic, 2003; and Ashayeri, 2005). In our case, the cost 

of evaluating a solution is rather high therefore we focus on an algorithm which tries to 

keep the needed number of evaluated solutions low. This excludes, for example, 

algorithms such as the Genetic and to some extent Branch and Bound algorithms.  

Another sub-class in meta-heuristics is simulating the annealing method, which we will 

use in this paper (e.g. Kirkpatrick 1983, Chiyoshi and Galvão, 2000; Al-khedhairi, 2008; 

and Murray and Church, 1996). This randomized algorithm has been chosen due to its 

flexibility, its ease of implementation and the quality of results in the case of complex 

problems. Al-khedhairi (2008) gave the general SA heuristic procedures.  

SA starts with a random initial solution s, a choice of a control parameter named the 

initial temperature   , and the corresponding temperature counter    . The next 

step is to improve the initial solution. The counter of the number of iterations is initially 

set as     and the procedure is repeated until    , where   is the pre-specified 

number of iterations of the algorithm. A neighborhood solution    is evaluated by 

randomly exchanging one facility in the current solution to the one not in the current 

solution. The difference,  , of the two values of the objective function is evaluated. We 

replace s by    if    , otherwise a random variable          is generated. If 

   
 
 

 
 , s still replaces   . The counter is updated as       whenever the 

replacement does not occur. Once   reaches L, the temperature counter is updated as 
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      and T is a decreasing function of t. The procedure stops when the stopping 

condition for t is reached.  

Given p we start the simulated annealing by randomly selecting points to locate the 

service centers. We then randomly select one of the suggested service center location 

sites and define a neighborhood around it. As the neighborhood we apply a square of 

25 km centered on the selected site. If we have less than 50 candidates for a service 

center location we increase the neighborhood by steps of 2.5 km until this criterion is 

satisfied. This was necessary in just a few cases.  

4.2 Adaptive Tuning and Parameters 

The parameters used here have been tuned after prior testing. In our study we start 

with the initial temperature    of 400. We multiply the temperature by 0.95 at each 

new iteration. To avoid having our algorithm blocked in a local minimum, we have an 

adaptive scheme to reheat the system. If 10 times in a row we refuse a solution, we 

increase the temperature multiplying the temperature by   . A suitable value of   is 

0.5. Therefore, the initial value of   is 0.5 and if no solution is accepted between two 

updates of the temperature we increase beta   by 0.5.   will be reset to 0.5 as soon 

as we accept a solution. Experiments done with 2000 and 20,000 iterations have shown 

that for our cases 20,000 leads to significantly better results. The number of iterations 

has been fixed at 20,000. Our experiments have been conducted on an Intel Core2 duo 

E8200 cpu working at 2.66 GHz. The operating system used is Linux and programming 

has been done in C and compiled with gcc. It took us about 24 hours to compute 20,000 

iterations. 

5.  Results 

Table 2 shows some results from the computer experiments when different density in 

the Dalecarlia road network for the location of a different number of service centers is 

alternated. The table gives information on the mean travel distance in the road network 

from their residence to the closest service center for the inhabitants in Dalecarlia. 
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Highlighted figures in the table indicate the best solution found for a given number of 

service centers (p). When p is set to 15 the solutions computed continue to be better 

until road class 3 is added to road classes 0, 1 and 2. The best solution gives an average 

travel distance in the complete road network from the inhabitants’ homes to the closest 

service center of 8.53 kilometers.   

The main result which can be drawn from Table 2 is that a more complex location 

problem can take advantage of a more complex network. This is shown by the fact that 

when the number of service centers is below 20 the best solutions are found already 

with the density given by the road classes up to two while when the number of service 

centers is above 20 the best solutions are found with a higher density of road network.  

Table 2. The mean network distance in kilometers to the closest service center given 

different p and densities of the road network to locate on.  

 Road classes in the road network 

p 500pt 1000pt 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 

5 22.71 20.34 19.74 19.73 20.20 20.17 20.25 19.99 20.07 20.33 20.52 

10 11.20 11.23 11.18 11.17 11.20 11.22 11.26 11.38 11.44 11.74 11.80 

15 8.63 8.64 8.63 8.53 8.58 8.58 8.66 8.63 8.75 8.92 9.21 

20 7.67 7.61 7.11 7.11 7.03 7.08 7.18 6.99 7.24 7.54 7.82 

25 7.15 7.31 7.19 6.19 6.24 6.12 6.16 6.15 6.30 6.61 6.94 

30 6.90 6.93 6.94 5.78 5.56 5.34 5.58 5.55 5.68 5.88 6.05 

35 6.72 6.67 6.67 5.33 5.10 4.96 5.15 5.13 5.16 5.29 5.43 

40 6.52 6.47 6.54 5.09 4.71 4.70 4.71 4.72 4.69 4.89 5.29 

45 6.34 6.31 6.33 4.90 4.45 4.29 4.40 4.42 4.49 4.69 4.84 

50 6.27 6.24 6.25 4.69 4.24 4.14 4.09 4.12 4.24 4.40 4.46 
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Figure 2. Variations in excess distances (in per cent) compared to the best solutions when 

different density in the network has been used to find an optimal location on. 

Figure 2 illustrates how much worse (in per cent) solutions are in relation to the best 

solution for different densities in the network. In the figure this is illustrated with a 

selection of different p. The conclusion is that there is more to gain in choosing the right 

density level on the network when p is higher. This is clearly shown since when the 

number of service centers is 20 or less the worse solution found is not less than 12 per 

cent longer than the best one. On the other hand for location problems with more than 

25 service centers the worst solution is at least 30 per cent longer than the best one.  

6. Conclusions and Discussions 

The paper aims to examine the effect of alternating the density in a road network when 

service center location problem is studied. To do so, we use a large scale real world 

road network with 1.5 million nodes in the region of Dalecarlia in Sweden and we 

alternate the density of the road network used to locate on from 500 to 67,000 

candidate nodes. As demand points we use the population in the region registered on 

squares of 250 by 250 meters. The population and the network are asymmetrical 

distributed in the region due to natural barriers. To scrutinize the problem we also 
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alternate the number of p between 5 and 50. In doing so, we cover inter-urban location 

problems as well as intra-urban location problems. We use the p-median model and 

meta-heuristics to find the optimal solutions.   

It has earlier been shown that it is important to use the network distances when 

optimal locations are sought. In this study we add the result that an increased density of 

the road network is only necessary up to a certain level. We also show that when the 

number of service centers increases the density needed in the network tends to be 

higher. This implies that for inter-urban location problems (like for instance locating 

emergency hospitals or courts) with lower p in a region of the size used here it is 

sufficient to use fairly simple networks, while dealing with inter-urban as well as 

intra-urban location problems (like for instance locating high schools or post offices) 

simultaneously with higher p the need for a more refined network is larger.  

The road network used here was not constructed for the purpose of service centers 

location. The structure of it is probably suitable for a lot of issues related to what 

happens on the road.  However, in organizing this network to be suitable for the 

purpose of being used in location problem we turn out to have between 500 candidate 

nodes up to 67,000 candidate nodes which are the extremes in our case. It turns out 

that these two extreme densities of the road network were not suitable for solving the 

location problem here. One possible future research question could be how the road 

network should be arranged to be suitable for location allocation problems.   

In this study we use simulated annealing. It has obvious drawbacks. It would however 

be interesting to evaluate how other algorithms would perform in this kind of setting.  

Further, the case here is quite a small geographical rural area, Dalecarlia. As such more 

case studies are needed. In addition, the important roads are first and foremost 

designed to be efficient in a national transportation system. Further, many public 

activities but also private businesses are taken conducted at a national level. There is a 

need to better evaluate the efficiency in present situations of where these activities are 
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carried out. One suggestion for future research is therefore to scale up the present case 

study to national level. Advanced methods (e.g. more aggressive heuristics, distributed 

computing) will be needed to keep the computing time acceptable and still reach 

excellent solutions.  
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Abstract: A customer is presumed to gravitate to a facility by the distance to it and the 

attractiveness of it. However regarding the location of the facility, the presumption is that 

the customer opts for the shortest route to the nearest facility. This paradox was recently 

solved by the introduction of the gravity p-median model. The model is yet to be 

implemented and tested empirically. We implemented the model in an empirical problem 

of locating locksmiths, vehicle inspections, and retail stores of vehicle spare-parts, and 

we compared the solutions with those of the p-median model. We found the gravity 

p-median model to be of limited use for the problem of locating facilities as it either 

gives solutions similar to the p-median model, or it gives unstable solutions due to a 

non-concave objective function. 
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1. The background to the gravity p-median model 

Consider a market area with already existing facilities (or service points) competing for 

customers. Conventionally, a model for estimating market shares is based on the gravity 

model presented by Huff (1964, 1966). He proposed the probability that a customer 

patronizes a certain facility to be a function of the distance to and attractiveness of the 

facility. The model defines for each customer a probability distribution of patronage for 

each facility in a market area. Thereby, the market share of a facility can be evaluated by 

aggregating all the customers and corresponding probabilities in the area of interest. 

The same model may be used for investigating the effect of adding or removing a single 

facility in the market area contingent to a specific location of that facility (see Lea and 

Menger, 1990). Moreover, an optimal location with regard to some outcomes can be 

identified (Holmberg and Jornsten, 1996).  

However, the general problem of allocating P facilities to a population geographically 

distributed in Q demand points is usually executed in a different manner. Hakimi 

considered the task of locating telephone switching centers and formalized what is now 

known as the p-median model. The p-median model addresses the problem of allocating 

P facilities to a population geographically distributed in Q demand points such that the 

population’s average or total distance to its nearest facility is minimized (e.g. Hakimi 

1964, Handler and Mirchandani 1979, and Mirchandani 1990). The p-median objective 

function is                  , where N is the number of nodes, q and p indexes the 

demand and the facility nodes respectively, qw  the demand at node q, and qpd  the 

shortest distance between the nodes q and p. Hakimi (1964) showed that the optimal 

solution of the p-median model existed at the network’s nodes. After Hakimi’s work, the 

p-median model has been used in a remarkable variety of location problems (see Hale 

and Moberg, 2003). 

However, it has been argued that the p-median model is inappropriate for locating 
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facilities in a competitive environment because of the assumption that customers opt for 

the nearest facility (see e.g. Hodgson, 1978 and Berman and Krass, 1998). Recently, 

Drezner and Drezner (2007) presented the gravity p-median model that integrates the 

gravity rule with the p-median model. In their paper, they restate arguments for the 

gravity rule that can be found elsewhere: 1) the population is often spatially aggregated 

and approximately represented by the center of the demand point, 2) customers might act 

on incomplete information regarding the distance to each of the facilities, and 3) facilities 

vary in attractiveness to customers. There is also a fourth argument namely that the 

choice of facility may depend on other purposes for a trip (Carling and Håkansson, 

2013). 

Up to now, the computational aspects of the gravity p-median model have been studied 

with the intention of finding good solutions to the NP-hard problem (Drezner and 

Drezner, 2007 and Iyiguna and Ben-Israel, 2010). The same holds for Drezner and 

Drezner’s (2011) extension of the model to a multiple server location problem. 

The aim of this paper is to put the gravity p-median model to an empirical test. We 

consider the problem of locating 7 locksmiths, 11 vehicle inspections, and 14 retail stores 

of vehicle spare-parts in a Swedish region where we have detailed network data and 

precise geo-coding of customers. The p-median model ought to be appropriate in the 

vehicle inspection problem, whereas the gravity p-median model is presumably more 

suitable for the retail store problem. The problem of locating locksmiths may be regarded 

both a p-median problem and a gravity p-median problem.  

This paper is organized as follows: section two presents the empirical setting and 

discusses the implementation of the gravity p-median model. Section three presents the 

results. And the fourth section concludes this paper. 

2. Implementing the gravity p-median model 

2.1 Geography 
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Figure 1 shows the Dalecarlia region in central Sweden, about 300 km northwest of 

Stockholm. The size of the region is approximately 31,000 km
2
. Figure 1a depicts the 

location of customers in the region
1
. As of December 2010, the Dalecarlia population 

numbers 277,000 residents. About 65 % of the population lives in 30 towns and villages 

of between 1,000 and 40,000 residents, whereas the remaining third of the population 

resides in small, scattered settlements. 

 

Figure 1b shows the landscape and it gives a perception of the geographical distribution 

of the population. The altitude of the region varies substantially; for instance in the 

western areas, the altitude exceeds 1,000 meters above sea level whereas the altitude is 

less than 100 meters in the southeast corner. Altitude variations, the rivers’ extensions, 

and the locations of the lakes provide many natural barriers to where people could settle 

and how a road network could be constructed in the region. The majority of residents live 

in the southeast corner while the remaining residents are located primarily along the two 

rivers and around Lake Siljan in the middle of the region. The region constitutes a 

secluded market area as it is surrounded by extensive forest and mountain areas which 

are very sparsely populated. Hence, in the following we ignore potential influence of 

customers and facilities outside the region.  

2.2 Distance measure  

Carling, Han, and Håkansson (2012) found the Euclidian distance measure to perform 

poorly for the p-median problem, leading to suboptimal locations and biased market 

shares in this rural area. In the empirical analysis we have tested the Euclidean measure 

but because of its shortcomings we focus on what follows from the travel-time distance. 

To obtain the travel-time, we assumed that the attained velocity corresponded to the 

speed limit on the road network. 

 

                                                        
1 The population data used in this study comes from Statistics Sweden, and is from 2002 (www.scb.se). The residents 

are registered at points 250 meters apart in four directions (north, west, south, and east) implying a maximum error of 

175 meters in the geo-coding of the customers. There are 15,729 points that contain at least one resident in the region. 
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Figure 1: Map of the Dalecarlia region showing (a) one-by-one kilometer cells where the 

population exceeds 5 inhabitants, (b) landscape, (c) national road system, and (d) national road 

system with local streets and subsidized private roads.  
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The Swedish road system is divided into national roads and local streets which are public 

as well as subsidized and non-subsidized private roads. In Dalecarlia, the total length of 

the road system in the region is 39,452 km (see Figure 1d).
2
 Han, Håkansson, and 

Rebreyend (2013) used the p-median model on this road network, and they noted that for 

P small the national road network was sufficient. Therefore, we only use the national 

roads in this study. 

Figure 1c shows the national road network in the region. The national road system in the 

region totals 5,437 km with roads of varying quality which are in practice distinguished 

by a speed limit. The speed limit of 70 km/h is default and the national roads usually 

have a speed limit of 70 km/h or more. 

2.3 Objective function and parameters 

The objective function for the gravity p-median model is similar to the objective function 

of the p-median model with the addition of a term specifying the probability that a 

customer located at node q will visit a facility at node p. Drezner and Drezner (2007) 

specify the probability term as 
        

         
   

, where    is the attractiveness of the 

facility and   is the parameter of the exponential distance decay function
3
. As a 

consequence, the gravity p-median objective function is 

           
            

   

         
   

     . 

As noted above, we use travel-time as the distance measure which means that the 

quickest path between q and p needs to be identified. We implemented the Dijkstra 

algorithm (Dijkstra 1959) and retrieved the shortest travel time from the facilities to 

residents in each evaluation of the objective function. We impose that facilities are 

located at the nodes of the network even though the Hakimi-property does not generally  
                                                        
2 The road network is provided by the NVDB (The National Road Data Base). The NVDB was formed in 1996 on 

behalf of the government and is now operated by the Swedish Transport Agency. NVDB is divided into national roads, 

local roads and streets. The national roads are owned by the national public authorities, and their construction is funded 

by a state tax. The local roads or streets are built and owned by private persons, companies, or by the municipalities. 

Data was extracted in spring 2011 and represents the network of winter 2011. The computer model is built up by about 

1.5 million nodes and 1,964,801 road segments. 
3 The exponential function and the inverse distance function dominate in the literature as discussed by Drezner (2006).  
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Table 1: Swedes self-estimated network distance for purchases of durable goods.  

 Travel distance (km) 

 <2.5 2.5-5 5-25 25-50 50-125 125-250 >250 

Proportion (%) 14 22 32 17 9 4 2 

apply to the gravity p-median model (Drezner and Drezner, 2007). The reason for this 

choice is to enable a fair comparison with the p-median solutions which will be at the 

nodes. Moreover, all customers are assigned to the facilities which means that we 

abstract from the possibility of lost demand, i.e. the case when some customers seek 

substitutes because of the facilities being inaccessible for them (Drezner and Drezner, 

2012). 

The attractiveness parameter,   , is discussed under subsection 2.5 but it is varied for 

only one of the businesses.  

The value of lambda
4
 is decisive on how far a customer is likely to travel for patronize a 

facility. For λ=0, all (equally attractive) facilities are equally likely to be patronized by 

the customer, irrespective of the customer’s distance to them. The larger the value of 

lambda, the more attached the customer is to the nearest facility. Drezner (2006) derived 

λ=0.245 for shopping malls in California whereas Huff (1964, 1966) reported, albeit 

using the inverse distance function, on larger values for grocery and clothing stores. We 

use Drezner’s value converted from Euclidean distance and English miles into the 

corresponding value for the network distance and in kilometres. By assuming the 

network distance
5
 to be 1.3 times the Euclidean distance we have λ=0.11. 

A value of lambda specific for the applications here is λ=0.035. We obtained this value as 

the maximum likelihood estimate of the parameter based on grouped data from the 

Swedish Trade Federation (Svensk Handel). The data values are shown in Table 1. In the 

empirical part, we only consider goods and services requiring infrequent trips which 

                                                        
4 The solutions to the location models are obtained in the travel time network. To conform to the existing literature, we 

discuss lambda in terms of a parameter for a road network. In the algorithm we adjust lambda to the corresponding 

value in the travel time network. 
5 Love and Morris (1972) found a coefficient of 1.78, however the relationship has been observed elsewhere in the 

literature and found relevant for this network in Carling et al (2012). 



 

- 8 - 

 

ought to be like durables. 

2.4 Implementation of simulated annealing 

The p-median problem is NP-hard (Kariv and Hakimi, 1979) and so is the gravity 

p-median problem. Han et al (2013) discussed and examined solutions to the p-median 

problem for the region’s network. They advocated the simulated annealing algorithm 

which is used here and also used for the gravity p-median model.
6
 This randomized 

algorithm is chosen due to its ease of implementation and the quality of results regarding 

complex problems. Most important in our case is that the cost of evaluating a solution is 

high and therefore we prefer an algorithm which keeps the number of evaluated solutions 

low. This excludes for example algorithms like Genetic Algorithm and some extended 

Branch and Bound. Moreover, we have good starting points obtained from pre-computed 

trials. Therefore a good candidate is simulated annealing (Kirkpatrick, Gelatt, and Vecchi, 

1983). 

The simulated annealing (SA) is a simple and well described meta-heuristic. Al-khedhairi 

(2008) describes the general SA heuristic procedures. SA starts with a random initial 

solution s, the initial temperature   , and the temperature counter    . The next step 

is to improve the initial solution. The counter     is set and the operation is repeated 

until    . A neighbourhood solution    is evaluated by randomly exchanging one 

facility in the current solution to the one not in the current solution. The difference,  , of 

the two values of the objective function is evaluated. We replace s by    if    , 

otherwise a random variable          is generated. If         , we still replace s 

by   . The counter        is set whenever the replacement does not occur. Once   

reaches L,        is set and T is a decreasing function of t. The procedure stops 

when the stopping condition for t is reached. 

The main drawback of the SA is the algorithm’s sensitivity to the parameter settings. To  

                                                        
6 Drezner and Drezner (2007) discuss alternative heuristic algorithms. 
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Table 2: Average value of the objective function as well as the lower bound of a 99% confidence 

interval for the minimum of the objective function (in parenthesis). 

  Location model  

Business PM GPM (λ=0.11) GPM (λ=0.035) 

Vehicle Insp. 611.09 (597.16) 794.06 (756.36) 1724.86 (1671.46) 

Locksmiths 798.45 (778.91) 946.59 (907.23) 1756.08 (1713.88) 

Spare-parts 545.80 (518.53) 745.23 (708.12) 1716.51 (1669.63) 

- twofold    n a 754.57 (739.23) 1716.86 (1664.78) 

- fivefold    n a 757.89 (718.12) 1702.54 (1669.79) 

overcome the difficulty of setting efficient values for parameters such as temperature, an 

adaptive mechanism is used to detect frozen states and if warranted re-heat the system.
7
 

In all experiments, the initial temperature was set at 400 and the algorithm stopped after 

10,000 iterations. Each experiment was computed twice with different random starting 

points to reduce the risk of local solutions. To ascertain the quality of the solution we also 

applied a method for computing a 99% confidence interval for the minimum, to which 

the obtained solution can be compared. In doing so, we follow the recommendation in 

Carling and Meng (2013) who studied alternative approaches to statistically estimating 

the minimum of an objective function for the p-median problem. Table 2 gives the 

average of the objective function obtained as a solution to its minimum as well as the 

lower bound of the confidence interval. The businesses under study are described in the 

ensuing subsection. 

Typically, the solutions are some 10 to 40 seconds away from a lower bound of the 

minimum which we consider sufficiently precise for this type of applications. 

2.5 Businesses under study 

The problem of locating vehicle inspections appears frequently in the literature on the 

p-median model (see e.g. Francis and Lowe, 1992). In Sweden, vehicle inspection was a 

state monopoly until 2009 when the market was deregulated. A state monopoly may be 

clearly regarded as a central planner and we therefore expect current locations of the 
                                                        
7 Our adaptive scheme to dynamically adjust temperature works as follow: after n=10 iterations with no improvement, 

the temperature is increased according to newtemp=temp*3^β, where β starts at 0.5 and is increased by 0.5 each time 

the system is reheated. As a result, the SA will never be in a frozen state for long. The temperature is decreased each 

iteration with a factor of 0.95. The settings above are a result of substantial preliminary testing on this data and 

problem. In fact, some of the solutions were compared to those obtained by alternative heuristics. 
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inspections to resemble the p-median solution.  

As of October 2012 there are eleven vehicle inspections operated by two companies in 

Dalecarlia. The inspections perform vehicle safety checks of vehicles according to EU 

protocol; hence there is no reason to expect the inspections to vary in attractiveness. 

Furthermore, the owner of a vehicle is required to regularly have the vehicle inspected. 

Older vehicles are subject to annual inspections whereas newer ones, inspections are 

triennial. Thus, a trip to the vehicle inspection is an infrequent patronage. 

There are seven locksmiths in the region. These are small business without any central 

control. The virtue of the business makes it far-fetched that locksmiths differ much in 

attractiveness. Putting these two facts together, it is difficult to decide whether to expect 

locksmiths to follow a p-median or a gravity p-median location pattern. 

The third business is retail stores of vehicle spare-parts. There are two competitors in the 

region. One has 12 facilities in the region and the other has 2 facilities. However, the 

stores of the latter competitor are large and offer an ample selection of spare-parts as well 

as many complementing products. We expect these two stores to be quite more attractive. 

We consider two assumptions. The first is the case where the two stores are twice as 

attractive as the competitor’s stores. The second is the case where the two stores are 

assumed to be five times as attractive. 

3. Results 

Figure 2 shows the current location of the 11 vehicle inspections (Figure 2a) and the 7 

locksmiths (Figure 2b) in the region. Imposed on the map in the figure is the solution to 

the p-median model (hereafter PM) for the two businesses. As expected, the current 

location of the vehicle inspections is quite near to the PM solution where ten out of 

eleven facilities coincide. The current locations of the seven locksmiths differ from the 

PM solution, but not by much.  
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Figure 2: Map of the Dalecarlia region showing the current locations and the p-median (PM) 

solution for (a) vehicle inspections and (b) locksmiths. 

We now turn to the gravity p-median model (hereafter referred to as GPM followed by λ 

used) and how it compares to PM. Figure 3 shows that the GPM(0.11) solution is similar 

to the PM solution; for the vehicle inspections problem, the results of the models 

coincides almost completely. The similarity is also apparent in the case of locksmiths.  

 
Figure 3: Map of the Dalecarlia region showing the p-median (PM) solution and the gravity 

p-median (GPM) solution with        for (a) vehicle inspections and (b) locksmiths. 
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Table 3: The customers’ average travel-time (seconds) to the nearest facility for current locations 

and p-median (PM) as well as gravity p-median (GPM) solutions. 

 Location model 

Business Current PM GPM (λ=0.11) GPM (λ=0.035) 

Vehicle Insp. 612.65 611.09 629.59 863.77 

Locksmiths 1014.36 798.45 815.92 1188.09 

Spare-parts 789.94 545.80 551.97 808.19 

- twofold    n a n a 588.29 823.73 

- fivefold    n a n a 583.83 897.11 

To understand the practical difference between the solutions of the PM and the 

GPM(0.11) models, we compute the travel-time to the nearest facility for customers in 

the region. Table 3 shows the average travel-time to the current locations, the PM, and 

the GPM solutions. The GPM(0.11) gives solutions that imply some two per cent longer 

travel time to the nearest vehicle inspection or locksmiths compared to the PM solutions. 

Table 3 also gives the average travel-time for the GPM(0.035) solutions. Recall that this 

model is the best estimate of how Swedish customers patronize facilities of durable 

goods and services. The GPM(0.035) solutions differ substantially from the PM where 

the GPM(0.035) solutions imply some 50 per cent longer trips to the nearest facility on 

average. 

Following up on the findings in Table 3, Figure 4 contrasts the GPM(0.035) solutions to 

the PM solution for vehicle inspections (Figure 4a) and locksmiths (Figure 4b). The 

models provide distinctively different geographical configuration of locations. For the 

GPM(0.035), facilities tend to be clustered in some towns, and we stress that it is not 

because the algorithm entered local minima as we have tested several starting values and 

the clustering pattern repeated itself. 
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Figure 4 Map of the Dalecarlia region showing the p-median solution (PM) and the gravity 

p-median solution (GPM) with         for (a) vehicle inspections and (b) locksmiths. 

The clustering pattern indicates a difficulty to identify potential locations which give a 

unique market area for a facility. Consider that λ=0.035 implies that a customer’s 

expected travel distance is about 30 kilometers, and consequently facilities cover vast 

market areas leaving no or only remote areas uncovered in this spatially saturated market. 

And in a spatially saturated market, market shares will not be found in uncovered areas 

but in large market areas with relatively few competing facilities; thus the clustering 

pattern of facilities. 

Consider now the more challenging business of spare-parts for vehicles. Figure 5 shows 

the geographical configuration of locations for the three models and current locations. In 

Figure 5a the current locations of spare-parts stores is contrasted with the PM solution of 

14 facilities showing a substantial difference between them. In Figure 5b configuration of 

GPM(0.11) and GPM(0.035) are contrasted. Again, the two values of λ lead to 

substantially different configurations where the clustering pattern of GPM(0.035) is 

pronounced. By comparing Figure 5a with 5b, there is a notable similarity between the 

PM and GPM(0.11) solutions on the one hand whilst on the other hand a similarity 
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between GPM(0.035) and current location of the stores of vehicle spare-parts. 

As noted above, there are two existing facilities in the region which are substantially 

more attractive than the competitor’s twelve stores. We postulate that the difference in 

attractiveness is either twofold or fivefold. Figures 5c-d give the configuration of stores 

for the GPM solutions as well as indicate the two more attractive stores. In spite of 

introducing heterogeneity in attractiveness, GPM(0.11) continues to produce a solution 

similar to the PM. The GPM(0.035) solution gives a strong clustering with a remarkable 

location of facilities in the north-west of the region. This aberrant solution points at an 

instability of the model because of a spatially saturated market. 

The GPM(0.035) has given unstable solutions in several of the problems as indicated by 

multiple locations at the same node and several facilities being located close to the 

region’s border. To examine the problem of a spatially saturated market we conduct an 

experiment. Figure 6 gives the attained value of the objective function for the three 

models when locating two to twenty facilities in steps of two. It shows that the attained 

value of the objective function consistently decreases for the PM solutions when the 
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Figure 5: Map of the Dalecarlia region showing (a) the current location and the p-median solution, 

(b) the gravity p-median solution with        and         and     , (c) twofold 

attractiveness and         and (d) twofold attractiveness and         for retail stores of 

vehicle spare-parts. 

 

Figure 6: The attained value of the objective functions for the different location models in an 

experiment with locating 2 to 20 facilities in steps of 2. 
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Table 4: The market share for seven locksmiths in the region.  

 Location model 

Facility Current PM GPM (λ=0.11) 

1 16.30% 12.45% 13.23% 

2 14.21% 14.33% 13.96% 

3 27.46% 23.85% 24.08% 

4 21.76% 19.93% 19.84% 

5 13.37% 13.53% 13.10% 

6 =0 9.89% 9.56% 

7 6.90% 6.02% 6.23% 

number of facilities is increased. For GPM(0.035) the objective function decreases 

slowly initially and then flattens out at about 8 facilities. Hence, in the location of 8 or 

more facilities the objective function lacks a unique configuration of the facilities 

associated with the minimum because of its non-concave form. The practical 

interpretation of this is in a spatially saturated market there is no geographical location 

that will make a facility successful from offering an improved accessibility to the 

customers. 

Before concluding that the PM and GPM(0.11) solutions are interchangeable, we need to 

verify that they give a similar market share and market area of the facilities. In doing so 

we take locksmiths as an example simply because it is easy to match PM-facilities to 

GPM(0.11)-facilities in this case. Table 4 gives the expected proportion of customers 

patronizing the seven locksmiths. In calculating the expected proportion, we stipulate 

that the customers patronize the facilities in accordance with the probability 
         

          
   

, 

i.e. the gravity model with       . The table shows that the PM solution and 

GPM(0.11) solution matches. In the table the market shares for the current locksmiths is 

also shown, setting the market share at zero for the sixth facility as found in the PM and 

GPM solutions but not in reality. 
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Figure 6: Map of the Dalecarlia region showing the market areas for the locksmiths; (a) areas for 

PM location of locksmiths, (b) areas for current location of locksmiths. 

 

Figure 7: Map of the Dalecarlia region showing the market areas for the locksmiths; (a) areas for 

PM location of locksmiths, (b) areas for GPM (      ) location of locksmiths. 
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The similarity in the geographical extension of the market areas for the locksmiths is 

illustrated in Figures 6-7. The figures show the market areas for the locksmiths including 

only dedicated customers i.e. those who have at least 50 per cent probability of 

patronizing the facility.
8
 In figure 6 the current market areas is compared with market 

areas of the PM solution. The PM solution suggests a market area in the middle of the 

region which partly contributes to making the market areas quite different even though 

the location of facilities is similar between current and the PM solution (see Figure 2). 

Figure 7 illustrates the similarity in market areas for the PM and the GPM(0.11) solutions. 

In summary, the PM and the GPM(0.11) solutions are found to give similar location of 

facilities, similar market shares, and also similar market areas. Hence, they appear 

interchangeable as location models. 

4. Concluding discussion 

The p-median model is used when optimal locations are sought for facilities. It is 

assumed that customers travel to the nearest facility along the shortest route. In a 

competitive environment, such as the retail sector, this is not necessarily realistic. To 

address the location problem more realistically, the gravity p-median model has recently 

been suggested as a tool for seeking location of multiple facilities in competitive 

environments. This model is not yet tested empirically. In this study we implemented the 

gravity p-median model in an empirical problem of locating locksmiths, vehicle 

inspections, and retail stores of vehicle spare-parts. In doing so, we contrasted the 

solutions of gravity p-median model to those of the p-median model.  

We find that the p-median model gives solutions similar to the current location of vehicle 

inspections as expected and fairly similar to the current location of locksmiths. The 

current location of retail stores of vehicle spare-parts does not match the solution of the 

p-median model which indicates that the model is unrealistic in this case. 

                                                        
8 Drezner, Drezner, and Kalczynski (2012) discusses and reviews several views on customers in defining market areas. 
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The gravity p-median model requires a parameter defining the reach of the facility to 

customers. We examined two values. The first is        which is a derived value for 

shopping malls in California implying that the expected travel length in the road network 

is about 9 km (Drezner, 2006). The second value,          was obtained from a 

Swedish survey with an implied expected travel length in the road network of about 30 

km. For         the gravity p-median model gives solutions that coincide with the 

p-median solutions irrespective of heterogeneity in attractiveness of the facilities. Note, 

however, that we introduced heterogeneity in attractiveness only in the case of stores of 

vehicle spare-parts where such heterogeneity was realistic. 

For the most realistic value of        , we find the model to produce unstable solutions 

for at least the cases of vehicle inspections and stores of vehicle spare-parts. The 

instability results from a spatially saturated market in which no improvement in the 

objective function can be made from adding facilities. We illustrate that the market here 

is saturated for P at around 6-8 facilities. Given a small value of lambda, the competitive 

edge of a facility in a spatially saturated market is not given by its location, but by its 

attractiveness. In summary, we find the gravity p-median model to add little 

improvement over the classical p-median model. 
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How do neighbouring populations affect local population growth over time? 

 

Mengjie Han, Johan Håkansson, Lars Rönnegård 

Dalarna University 

Borlänge, Sweden 

 

Abstract: This study covers a period when society changed from a pre-industrial agricultural 

society to a post-industrial service-producing society. Parallel with this social transformation, 

major population changes took place. One problem with geographical population studies 

over long time periods is accessing data that has unchanged spatial divisions. In this study, 

we analyse how local population changes are affected by neighbouring populations. To do so 

we use the last 200 years of population redistribution in Sweden, and literature to identify 

several different processes and spatial dependencies. The analysis is based on a unique 

unchanged historical parish division, and the methods used are an index of local spatial 

correlation. To control inherent time dependencies, we introduce a non-separable spatial 

temporal correlation model into the analysis of population redistribution. Several different 

spatial dependencies can be observed simultaneously over time. The main conclusions are 

that while local population changes have been highly dependent on the neighbouring 

populations,  this spatial dependence have become insignificant already when two parishes is 

separated by 5 kilometres. Another conclusion is that the time dependency in the population 

change is higher when the population redistribution is weak, is it currently is and as it was 

during the 19th century until the start of industrial revolution.  

Keywords: population redistribution, spatial dependency, Moran’s I, non-separable time 

space correlation model, Sweden  
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1 Introduction 

This study extends over a period when society changed from a pre-industrial agricultural 

society to an industrial society with mechanisation and wage labour and, from an industrial 

to a post-industrial service-producing society during the latter part of the period. Parallel 

with this social transformation, major population changes have took place. Consequently, the 

geographical distribution and redistribution of the population has been a constantly recurring 

research theme in geography and in other disciplines.  

Over last decades substantial research focused on urbanization. However, the research 

touched upon concentration and dispersion and structured the population redistribution 

phenomena at different geographical levels internationally (e.g. Champion and Hugo 2004, 

Geyer and Kontuly 1996, Pounds 1990, Van der Woude, De Vries and Hayami 1990) and in 

Sweden (Eneqvist 1960, Norborg 1968, Andersson 1987, Håkansson 2000a, Nilsson 1989, 

Norborg 1999).  

One problem with geographical population studies over long time periods is accessing data 

that has unchanged spatial divisions (e.g. Gregory and Ell 2005). This problem has forced 

much of the research to be either case studies often with relatively detailed information 

except for a limited geographical area, or studies with larger study areas, such as countries or 

even larger areas, spanning over long time periods with often relative low spatial resolutions.  

The long term redistribution in Sweden was recently studied with a high spatial resolution 

(Håkansson 2000a). It was shown that the distribution of a population on a regional level at 

75% was the same in 1990 as it was in 1810. It was also shown that on a local level the 

distribution at 50% was the same in 1990 compared to 1810. Hence, it was concluded that 

the redistribution of a population has mainly been a local redistribution. The reasons for this 

are that most migration covered a short distance and that migration was a selective process.  

The implication is that there should be a measurable statistical dependency between 

population growths in neighbouring areas.  The nature of this relationship depends on what 
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redistribution process is at work at the time. Therefore, our aim is to analyse how and to 

what extent neighbouring populations affect local population growth.  

In this study, we adopt a national perspective on the local population growth in Sweden 

between 1810 and 2000. To do so, we use a unique data set with population figures in 

parishes for every 10th year. The parish division change over time. However, an unchanged 

geographical division over time has been constructed. The unchanged parish division consists 

of 1840 parishes. To our knowledge this spatial division is the lowest possible geographical 

level that is feasible to use for population studies of this kind and with this time perspective 

in Sweden. Even in an international perspective we are not aware of studies with this fine 

spatial division covering such a long time period and large geographical area. Based on the 

population figure, each parish’s population share of the total population in Sweden and its 

change is calculated. To conduct the spatial statistical analysis, we first use an index of spatial 

autocorrelation, local Moran’s I (Anselin 1995). Furthermore to control for temporal 

correlation, we also develop a non-separable statistical spatial-temporal correlation model to 

analyse how the population changes over time and space (see Cressie and Wikle 2011, 

Gneiting 2002). To our knowledge it is the first time such a model is used to analyse 

population redistribution over long time periods.   

This paper is organized as follows: section two presents a short literature review over the 

main processes that have redistributed the population in Sweden since the beginning of the 

19th century. In section three, the data and the empirical setting are presented and 

discussed. Section four presents the methods used in the spatial analysis. Section five gives 

the results. Section six concludes the paper.   

2 Literature review 

Several processes that have redistributed the population in Sweden have been described in 

the literature. Many of them, especially those dealing with the redistribution during the 19th 

and early 20th century, are conducted as case studies with a relatively limited geographical 

area as the study area.   
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Combining them together gives a picture of the redistribution in Sweden and that several 

different processes can be at work at the same time. For instance, it is obvious that the 

colonization of the interior parts of northern Sweden occurred at the same time as the 

emigration to the US.  

In this section we shortly review the major processes described in the literature, and we 

discuss how they affect the population redistribution between neighbouring parishes.   

(1) Colonisation: several studies show how the frontier of colonisation has been moved 

inland in Sweden’s northern regions (Norrland) throughout the 19th century (e.g. Enequist 

1937, Hoppe 1945, Bylund 1956 & 1968, Rudberg 1957, Egerbladh 1987). It appears that a 

large part of this colonisation took place through the population already living in northern 

Sweden starting new settlements constantly further inland from the coast. High fertility 

levels are an important explanation as to why a pool of colonizers evolved. However, 

migration from southern Sweden also took place. Colonisation in Norrland continued for a 

couple of decades into the 20th century. Since colonisation is a means in which new 

settlements evolve close to each other we expect a spatial dependency in which a parish with 

a population growth is surrounded by other parishes also expiring population growth.  

A number of settlement history studies also show a course of colonisation at the micro level 

in southern and central Sweden during the early and mid-part of the 19th century due to 

population pressure and to enclosure revision (e.g. Dahl 1941, Arpi 1951, Eriksson 1955, 

Hoppe and Langton 1994). These reveal that the division of villages led to a colonisation of 

the thinly populated outlying lands. We expect this process to find a spatial dependency in 

which a parish with population decrease is surrounded by other parishes, population 

increase due to colonisation.  

(2) Emigration: There was a great drain of population to North America (e.g. Sundbärg 1910, 

Atlas över Sverige 1960, Tedebrand 1972, Norman 1974, De Geer 1977, Norman & Rundblom 

1980). From emigration studies it is clear that the emigration during the latter part of the 

19th and early part of the 20th centuries was relatively greater from urban areas than from 

rural areas (Norman 1974, De Geer 1977, Norman & Rundblom 1980). However at first, 
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emigration was mainly from southern Sweden. Later when emigration from Norrland 

occurred, fewer people were involved. The loss of around million individuals undeniably had 

spatial consequences, as did the later addition of return migrants from North America 

(Tedebrand 1972, Lindblad 1995). We expect emigration to be a process in which a parish 

with a population decline is surrounded by other parishes undergoing the same development.   

(3) Depopulation of rural areas – Countryside urbanisation: at the micro level the 

depopulation process began relatively early in southern Sweden (e.g. Nordström 1952, 

Edestam 1955, Eriksson 1974). When urbanisation started, it first took place in the 

countryside where relatively many smaller towns developed. Several economic historical 

studies about sawmill and industrial communities show how the population moved in from 

the immediate surroundings (e.g. Godlund 1954, Hjulström & Arpi & Lövgren 1955). Others 

also demonstrated the connection between the building of railways and the growth of new 

towns along their routes (e.g. Heckscher 1907, Elander, and Jonasson 1949).  

Urbanisation: A larger number of studies show that the process of urbanisation changed after 

the end of the Second World War. People did not move merely from the countryside to 

towns. Instead, major towns experienced a powerful growth in population, while migration 

to southern Sweden increased, above all from Norrland (e.g. Bylund & Norling 1966). A 

number of studies focused on explaining the migration patterns in this stage of the 

urbanisation process (e.g. Godlund 1964, Wärneryd 1968, Jakobsson 1969, SOU 1970, Falk 

1976). Selective migration during urbanization changed the age structure so much that the 

regional differences in mortality and fertility patterns have changed to such an extent that 

the natural population changes currently concentrate the population (Håkansson 2000b). 

Due to urbanisation we expect to find parishes with population growth surrounded by other 

parishes with population decline. 

(4) Immigration: In the 1930s Sweden became a net-immigration country.  It is clear from the 

literature that immigration is one of the major contributions to population distribution 

during the post-war period. During the 1960s there was a boom of labour immigration. This 

went mainly to the major metropolitan areas and to industrial towns in southern Sweden 
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(Hammar 1975, Andersson 1993, Borgegård & Håkansson 1997). In the 1970s and 1980s 

reasons for immigration changed. Immigration due to war and persecution became the most 

common reason. To an extent larger than before new immigrant groups settled in the three 

metropolitan regions in Sweden, Stockholm, Gothenburg and Malmö, even though there was 

a policy at work during the 1980s that first dispersed the immigrants. Immigration can be 

assumed to concentrate the population towards the largest urban areas. Since the 

immigration population is growing in the larger cities, we expect they are going to live in 

more and more parishes. Therefore, we expect a similar spatial dependency as for 

colonisation on local level implying that a parish with population growth is surrounded by 

others with population growth.  

(5) Suburbanisation: During the 1960s and 1970s a growing number of dwellings began to be 

constructed in the fringe areas of towns. At the same time, suburban areas were built up 

outside the towns (e.g. Lewan 1967, Bodström, Lindström & Lundén 1979, Nyström 1990). 

Many smaller settlements on the fringes of towns, were also incorporated within the 

expanding towns (Johansson 1974). Explanations for this spread of built-up residential areas 

within the urban landscapes have been analysed in a number of studies (e.g. Lewan 1967, 

Holmgren, Listérus, Köstner & Nordström 1979, Lövgren 1986). The fringe areas and suburbs 

became places of residence for an increasing part of the population. We therefore expect to 

see a spatial dependency pattern in which a parish with population decline is surrounded by 

other parishes with population increase.  

(6) Counterurbanisation: During the 1970s the patterns of migration were changed as the 

larger towns experienced outmigration while the smaller towns and the countryside 

experienced inmigration (Ahnström 1980, Forsström & Olsson 1982, Nyström 1990, Forsberg 

1994, Borgegård, Håkansson & Malmberg 1995, Amcoff 2001). A few studies have pointed 

out the reasons for the stagnation in the big cities (e.g. Ahnström 1980, 1986). Several 

studies deal with the expansion and condition of middle-sized towns (e.g. Andersson & 

Strömgren 1988, Eriksson 1989, Kåpe 1999). Some studies demonstrate the importance of 

the demographic components for population development in a number of different types of  
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Table 1 Concentration and Dispersion of the population in Sweden at local and regional level.  

Geographical 
levels 

1810-1840 1840-1880 1880-1960 1960-2000 

Local dispersion concentration concentration dispersion 

Regional dispersion dispersion concentration concentration 

municipality (Borgegård & Håkansson 1997, Håkansson 2000b). Other studies also point to 

the continued expansion of the major cities’ commuter districts and to the continued spread 

of settlements that are not tied to the suburban areas (Forsström & Olsson 1982, Nyström 

1990, Forsberg & Carlbrand 1994, Amcoff 2001, Lindgren 2003). Based on the literature, we 

expect to see the same spatial dependency pattern as for suburbanization.  

Most of the work about the redistribution of population referred to above is highly limited 

time-wise. However in some studies, population redistribution is dealt with over long periods 

and therefore partially bridges the temporal limitations (e.g. Eneqvist 1960, Lewan 1967, 

Norborg 1968 and 1974, Hofsten & Lundström 1976, Guteland, Holmberg, Hägerstrand, 

Karlqvist & Rundblad 1975, Andersson 1987, Söderberg & Lundgren 1982, Hägerstrand 1988, 

Nilsson 1989, Borgegård, Håkansson & Malmberg 1995, Norborg 1999, Bäcklund 1999, 

Håkansson 2000a). From these studies and the ones reviewed above, it is relevant to divide 

the redistribution during the last 200 years into different time periods. The time periods and 

the dominating direction in the population redistribution are shown in Table 1. In Figure 1 

the distribution of the populations in 1810 and 1990 are given. It illustrates that the effects of 

200 years of population redistribution have led to a distribution where there are large 

differences in population densities between nearby located parishes. This is a pattern of a 

highly urbanised population. Beside that, the similarity in how the populations’ are 

distributed in 1810 and 2000 is striking. From the figure it is also obvious that the large 

numbers of parishes that have undergone a population decline are located in the southern 

part of Sweden. Their distribution across southern Sweden is intermingled with the parishes 

with population increase. This together lends support to the idea that the redistribution in 

Sweden has mainly been a process in which nearby parishes are dependent on each other. 



8 
 

 

Figure 1 Population density in Swedish parishes in 1810 (a) and 1990 (b) as well as the annual 

population change between 1810 and 2000 (c).  

Based on this literature review, we can identify four different expected local spatial 

dependencies that work under different population redistribution processes (Table 2). As the 

population has grown significantly in Sweden since the beginning of the 19th century, we look 

at these spatial dependencies as changes in the share of the total population. All of these 

four different forms of spatial dependencies can be measured. However a fifth form, the 

non-spatial dependency, could exist. The non-spatial dependency can have different 

meanings depending on how and when it occurs. One obvious reason as to why a non-spatial 

dependency occurs is that the spatial dependencies defined here are wrong. Another reason 

could be that the spatial structure used in this study is too crude and does not capture the 

spatial dimension. Another explanation is that the processes that are evaluated here are too 

weak as population redistribution processes, and they just have minor impact. These could 

be described as social processes with a spatial dimension.   
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Table 2 Expected local spatial dependencies between a parish’s population change and the 

population change in its surrounding parishes  

Population change in a 

parish’s surrounding 

A parish’s population change 
Increase (H) Decrease (L) 

Increase (H) 
- Colonisation in Northern 
Sweden 

- Immigration 

- Colonisation on southern Sweden 
- Suburbanisation 
- Counter urbanisation 

Decrease (L) - Urbanisation - Emigration 
 

3 The data and an unchanged parish division  

This study is based on a material based on population numbers for administrative parish 

units and certain parish registrations from Tabellverket and SCB. The population returns are 

for every tenth year between 1810 and 2000. Altogether the material contains 2,615 

geographical units. Regarding the reliability of the information, these population figures are 

impaired by all of the flaws accompanying the employed sources (e.g. Nilsson 1989).  

The parish division changes over time. Different methods on how to create a consistent 

spatial division over time is discussed by Gregory and Ell (2005). Their aim is also to find 

automatic methods for doing this. This is not necessary in this paper. To create a spatial 

division over time, we started with assigning the population in each parish to a church co-

ordinate from 1972 (SCB 1972). The church coordinate is chosen because the church in most 

parishes is located with relatively high centrality in relation to the parish inhabitants. 

Information about boundary changes merges and divisions that involve transfers of people 

(see Sveriges församlingar genom tiderna 1989) have been used to organize a spatial parish 

division over time. This is achived by merging parishes whenever a parish change through 

merging, division or boundary change has occurred. In a last step, these churches are given 

the parish boundaries that existed in 1990. Every parish without a church coordinate is 

identified and merged to a parish had been merged to or divided from. The spatial division is 

then further adjusted to the 2000 spatial parish division. After merging, the unchanged 

spatial division consists of 1840 historical parishes (see Figure 2a).  
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Figure 2 A historical unchanged parish division (a) and present time parish areas which have been 

merged with other parishes due to changes in the parish division 1810-2000 (b) in Sweden. 

The reduction of parishes varies regionally (Figure 2b). The losses are largest in the sparsely 

populated areas in the interior parts of the northern Sweden and in the cities. Further, the 

regional differences in the number of analysis units naturally influence the analysis of the 

population changes. In principle, however, the effect of parish changes is eliminated and if 

one wants to conduct a study about population distribution in Sweden with this long time 

perspective, this division is the lowest possible level of observation that can be attained. 
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A more exhaustive description of the data and the unchanged parish division is given in 

Håkansson 2000.   

4 The spatial correlation index 

As shown by the literature review; we can expect that several different processes that 

redistribute the population are at work simultaneously, and that they result in different 

spatial dependencies. To obtain an understanding of how neighbouring populations affect 

the local population growth in a parish, we first analysed the spatial autocorrelation in the 

population redistribution from each parish separately. We therefore implemented Anselin’s 

Local Moran’s I in a GIS. The index (I) here is given from the parishes weighted by their 

population change rate. The method then identifies parishes whose percentage populations 

change rates correlates. To do this, we calculate a Local Moran's I index (Ii) and a Z score as 

well as the type of spatial correlation that are at work for each parish. Local Moran's I value is 

formulated as: 

   
     

  
             

 

       

 

where 

  
  

     
 
       

   
     

   is an attribute feature,    is the mean of the attribute, and      is the spatial weight 

between location   and  . The Z score is the normalized value of   , which indicates if    is 

significant or not. A positive value for   indicates that a parish is surrounded by other 

parishes with similar percentage populations change rates. Such a correlations is part of two 

types of spatial clusters (HH and LL in table 3) if they are statistical significant at a (0.05 level). 

A negative value for   indicates that a parish with a certain percentage population change 

rate is surrounded by other parishes with different percentage population change rates. Such 

a parish is considered as an outlier in a cluster if the correlation is statistically significant (0.05 
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Table 3 Spatial correlations in the population redistribution measured with Local Moran’s I 

Spatial correlations  The spatial relationship between parishes in the population 
redistribution  

HighHighValues (HH) Parishes with relative high population increase surrounded by 
other parishes with high relative population increase 

HighLowValues (HL) Parishes with relative high population increase surrounded by 
other parishes with fast relative population decrease. 

LowHighValues (LH) Parishes with fast relative population decrease, surrounded by 
other parishes with high relative population increase 

LowLowValues (LL) Parishes with fast relative population decrease, with similar 
developments in surrounding parishes 

No significant 
relationship  

Parishes relative population change is taken place randomly in 
space  

level) and this gives two other types of spatial clusters (HL and LH in Table 3).  The different 

types considered in this study are summarized in Table 3. In the table, a fifth category of a 

non-statistical significant relationship between parishes’ percentage population change rates 

is added. These defined spatial dependencies correspond with those expected as identified in 

the literature review (see Table 2). 

In the analysis, the parishes influence on a spatial cluster is weighted depending on their 

distance to the evaluated parish. We used an inverse distance decay function to weight the 

surrounding parishes. Further, we chose to limit the area taken into account in the Local 

Moran’s I analysis around the parishes to 86 km. The distance limit is chosen so that every 

parish that is evaluated has a least one other parish to be evaluated against.  However, we 

tested to set the outer limit for the area of interest to 20, 50, 60 and 70 km. The results of 

the analysis remain more or less the same.  

5 The spatial-temporal correlation model 

In the analysis of local spatial autocorrelations so far, we only consider observations between 

parishes located in spatial proximity to each other. However, it is important to include a 

temporal dimension because observations of population change are time dependent and 

there are tendencies for each spatial unit to inherit features from the previous time period. 
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To study correlation both in space and time, we now consider a spatial-temporal correlation 

model. 

To do so we first need to define the spatial temporal process. Let      be the proportion of 

the entire population at time   living in parish    , and let the observed change   be defined as  

                . For these observations we have a spatial-temporal Gaussian process for  

       

where Z      is a random variable of the population change in space s and time t. In the 

spatial-temporal analysis, the covariance C describes the relationship between nearby 

observation in time and space                                .  Here      is the 

increase in spatial distance and     is the increase in time, and all elements in C are 

assumed to be non-negative.  

For a covariance model assumed to be separable (as it often is),         can be written as 

         . However, these kinds of separable covariance models often produce erroneous 

results when applied to real world data (e.g. Cressie 2011). Due to this, we turn to a non-

separable covariance model which not only considers a product of spatial and temporal 

covariances, but also the interaction between them (e.g. Cressie and Huang 1999, Gneiting 

2002, Stein 2005). We use a non-separable covariance model suggested by Gneiting (2002): 

         
  

          
    

         

                

and the parameters to be estimated are          and   . The parameter    describes the 

interactions between space and time and can take values from 0 to 1. For    , the 

covariance function is separable, and for large    there is a strong dependency. The 

parameters were estimated by minimizing the difference between observed and fitted 

variograms (see Appendix).  

6 Results 

6.1 Local population change and spatial dependencies with the neighbouring populations  
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Figure 3 Spatial correlations between proximity located parishes in the population redistribution in 

Sweden 1810 to 2000 during different sub periods.  

To analyse the question of how local population change is affected by neighbouring 

populations, we first turn to the question regarding the extent of which different local spatial 

dependencies existed in the population redistribution. To answering this question, we used 

Moran’s I to search for clusters of different spatial dependencies defined in Table 3.  Figure 3 

shows the clusters of spatial dependencies from that analysis with the time divided into the 5 

sub periods as discussed above as well as for the entire 200 hundred year study period.  

It is obvious from Figure 3 that different clusters of spatial dependencies affecting the 

population redistribution co-exist at the same time. It is also obvious that the spatial 

dependencies in the population growth change over time.  In addition, note that all of the 

four different the spatial clusters identified and defined in this study (HH, HL, LH and LL see 

Table 2 and 3) have existed in the redistribution of the Swedish population.   
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The most wide spread and long lived form of cluster of spatial dependency in Swedish 

population redistribution is the one with a parish that has a fast population increase and 

which is surrounded by neighbouring parishes experiencing fast population increase (HH-

clusters). This type of spatial autocorrelation is at work early in the study period and is 

common in the northern parts of Sweden as well as in and around the three metropolitan 

areas.  Expected spatial dependencies of colonisation in northern Sweden and from 

immigration could therefore be observed.  

Resulting from urbanisation the expected spatial dependency, with a single growing parish 

surrounded by parishes with population decrease (HL-clusters), can also be seen in the figure.  

However, HL-clusters in the population redistribution are mainly at work in the southern part 

of Sweden. Even though HL-clusters can be noted in the early 19th century, it is most 

common during the 20th century. Within the southern part of Sweden it is also notable that 

the frequency by which HL-clusters can be observed alternate over time between the 

different parts.  

Clusters with parishes with a population decrease and surrounded by other parishes with a 

similar population change (LL-clusters), is, for a long time, co-existing in the southern part of 

Sweden with mainly HL-clusters.  At the beginning of the study period, the LL-clusters is at 

work first in almost every parish in a areas around the capital city of Stockholm stretching 

throughout the district of Bergslagen. Later, the centre of gravitation for this type of cluster 

moved further south to some of the agricultural heartlands in Sweden. The population 

redistribution behind this type of cluster corresponds well with the overall migration out of 

these areas, first to colonize the northern part of Sweden and second to North America.  In 

the 20th century, the LL-clusters become increasingly mixed up with HL-clusters. It also 

alternate in a similar way with its centre of gravitation between different parts of southern 

Sweden. This happened over time during the urbanisation, and it leads us to interpretat that 

this is part of the urbanisation that does not involves just a movement of people from the 

closest surrounding countryside, but also from a countryside at a longer distance to the 

growing cities.  
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The last defined spatial dependency, a parish with decreasing population surrounded by 

parishes with increasing populations (LH-clusters), can also be found, even though it is not 

that common either in time or space. However in early 19th century, LH-clusters could be 

seen in the northern parts of Scania in the most southern part of Sweden. Here it 

corresponds to enclosure revision, the colonisation of locally marginalised, and unproductive 

agricultural land. Beside that, LH-clusters could be observed around the metropolitan city of 

Stockholm during the urbanisation process.      

Even though these clusters of spatial dependencies can be observed to be at work, perhaps 

the most striking feature in the population redistribution throughout the study period is 

seemingly the lack of spatial dependency in population change between parishes. This is 

given by the fact that for a majority of the parishes there is no measurable significant spatial 

autocorrelation between neighbouring parishes. The development over time in this respect is 

also clear. The share of the parishes where population change does not correlate with 

surrounding neighbouring parishes increased from 63 per cent in the first sub period to 

above 93 per cent during the last period at the end of the 20th century. This means that the 

spatial relations in the redistribution of the population, as described in the literature, was at 

work in Sweden during the last 200 years either are counter acting each other, or are at work 

on an even lower geographical level which is impossible to measure here.  

6.2 Spatial-tempral dependency in the local population change. 

We first turn to the analysis of the temporal dependencies in the Swedish population 

redistribution for when spatial dependencies are controlled. Table 4 shows the time 

parameter and the interaction parameter from equation 1.  As shown in the table, the fitted 

covariance function was far from 0, and therefore, since the estimated interaction parameter 

  varies between 0.33 and 0.95 (Table 4), it shows the importance of including time-space 

interaction in a non-separable covariance model when analysing population redistribution. In 

table 4 the correlation in time is also shown.  The strongest temporal is in the 19th century 

with a peak for the period of 1840-1880 with a temporal correlation of 0.54. Therefore, this 

shows that during this period, the population growth in each parish was heavily dependent  
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Table 4 Estimated parameters for temporal changes within parishes. 

Time period     Correlation between 

annual changes 

within parishes 1810-1840 0.89 0.33 0.25 

1840-1880 0.02 0.84 0.54 

1880-1930 0.64 0.92 0.06 

1930-1960 0.84 0.95 0.02 

1960-2000 0.62 0.76 0.11 

 

 

Figure 4 Correlations, when inherent time dependency is controlled for, on different distances 

between parishes’ population changes in Sweden 1810-2000 divided into 5 sub periods 

on the previous years’ growth. From being very low, the correlation once again increases at 

the end of the study period. Therefore according to this study, it seems as if time 

dependency in the local population change is low when the population and the distribution 
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change substantially as it is after the industrial revolution the 1880s and approximately at a 

time when became a common good in the 1960s. 

We now turn to the analysis of the spatial dependencies in the Swedish population 

redistribution for when inherent time dependencies are controlled. Figure 4 give the 

correlation in population change between an average parish and other parishes lying with a 

increasing distance (between 0 and 20 km) from it for a time lag of 0 years (ie    ) during 

the different sub periods. Unsuprisingly this shows, for instance, that the correlation with it 

own population change is 1. However it also shows that the spatial correlation decrease with 

increasing distance. Also, it is when the correlation curves for different time periods are 

compared that the spatial dependency in the population redistribution have underwent 

changes over the 200 year study period.  For instance, compare the curves stretching over 

the 19th century with the ones stretching over the 20th century. In the 19th century the 

correlation between parishes population change was still as high as about 60 perscent when 

they were as far away from each others as 20 km.  This changed significantly, and at the end 

of the 20th centrury the distance decay function had become much steaper. The spatial 

correlation in population change between parishes is on average already non-existing when 

the distance between them is 5 km. To conclude, spatial dependency on how local 

population change is affected by neighbouring populations have gone from a situation in 

which there was a strong dependency even with parishes located far away from each other 

to a situation where there is a very limited covariation between parishes as close to each 

other as 5 km.    

6 Concluding discussion 

In this study, we analyse how local population change is affected by neighbouring 

populations. To do so we use the last 200 years of population redistribution in Sweden. From 

the literature several different processes and spatial dependencies can be identified. The 

analysis is based on a unique unchanged historical parish division, and the methods used are 

an index of local spatial correlation (Anselin Local Moran's I). To control for inherent time 
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dependencies we introduce a non-separable spatial temporal correlation model into the 

analysis of population redistribution.  

We found that the correlation between neighbouring parishes’ population change have 

diminished over time. From a situation in the 19th century when there was a strong spatial 

dependency even between parishes as far apart as 20 kilometres, it has change so that, 

nowadays, the correlation is already marginal when the distances between parishes is 5 

kilometres. The conclusions that can be drawn from this are: firstly that the local population 

changes have been rather dependent on the neighbouring populations and secondly spatial 

dependency in this respect is nowadays very low.  

Another finding is that the temporal dependency in the local population change increases 

when the geographical distribution of population becomes more stable.  

We also found several different spatial dependencies at work influencing the redistribution 

of population. For instance, all local spatial dependencies defined by Local Moran’s I can be 

observed. In fact it is shown that for most of the time, two or more local spatial 

dependencies are at work in redistributing the population at the same time. However, which 

of the four spatial dependencies analysed here that are at work at the same time change 

over time. Also note that the 4 spatial dependencies defined by Moran’s I (see table 3) do not 

capture all the spatial combinations that are at work simultaneously in the redistribution. A 

mixture of different spatial dependencies at work simultaneously in the same area lends us 

to add interpretations which combine the defined spatial dependencies. Lastly, the only 

significant spatial dependencies in the population redistribution in Sweden over the last 40 

years can be observed around the three metropolitan areas. The conclusion drawn from this 

pattern is that the redistribution in Sweden is related to immigration and high fertility rates.  

It is sometimes argued that population redistribution is a complex process. To make it 

understandable, the spatial patterns are often summarized and simplified to a single spatial 

measure, or to the rural urban dimension, or urban hierarchy, or to a very high geographical 

level. Further, the inherent time dependency in the redistribution is seldom controlled. The 

long population redistribution in Sweden is certainly a result of different processes at work 
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creating complex patterns of spatial dependencies. Applied to Sweden, we suggest some 

methodologies that on a low geographical level are able to both visualize the complexity in 

the population redistribution and to summarize this when the inherent time dependency is 

controlled for.   
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Appendix 

To estimate the parameters in the spatio-temporal covariance model we use the variogram 

function (see Sherman 2011). The variogram is related to the covariance model as        

              and simplifies parameter estimation in (1).  The variogram can be 

reformulated as: 

                              . 

and consequently a moment estimate of the observed        is: 

        
 

         
                     

  

      

 

where        is the number of pairs of observations, truncated at 200 km and    20 years 

with no correlation assumed beyond these limits.  

The fitting algorithm was implemented in R (www.rproject.org). First we need to find a 

model variogram   curve that minimizes the difference to the observed variogram    as 

                                          (see Cressie 1993 and Sherman 2011). To do so 

we assume that the real parameter of covariance is   . For each  ,      is defined as the 

value of the m-dimensional variogram. Therefore, the minimization criterion is         

    . The model variogram is then fitted using weighted least square (WLS) (see Sherman, 

2011) such that we only need to minimize:  

 

              
   

    

 

   

 

where   is a diagonal matrix, with elements   
  on the diagonal. The choice of weight is 

  
                     , because                     characterize the variance of 
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         . Plugging in   
  the final expression to be minimized is           

         

     
   

 
 
   . 

To find the “best”  , a set of initial combination values between 0 and 1 was given and we 

implement Nelder–Mead simplex algorithm to calculate the  . To avoid local minimum, we 

ended up with 84 thousand different initial value combinations for each period and selected 

the solution with the minimal function value. The running time for fitting the five correlation 

curves is approximate 2.5 hours. 
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Computational study of the step size parameter of the subgradient
optimization method

Mengjie Han1

Abstract

The subgradient optimization method is a simple and flexible linear programming
iterative algorithm. It is much simpler than Newton’s method and can be applied to
a wider variety of problems. It also converges when the objective function is non-
differentiable. Since an efficient algorithm will not only produce a good solution but
also take less computing time, we always prefer a simpler algorithm with high quality.
In this study a series of step size parameters in the subgradient equation are studied.
The performance is compared for a general piecewise function and a specific p-median
problem. We examine how the quality of solution changes by setting five forms of step
size parameter α.

Keywords: subgradient method; optimization; convex function; p-median

1 Introduction

The subgradient optimization method is suggested by Kiwiel (1985) and Shor (1985) for solv-
ing non-differentiable functions, such as constrained linear programming. As to the ordinary
gradient method, the subgradient method is extended to the non-differentiable functions. The
application of the subgradient method is more straightforward than other iterative methods,
for example, the interior point method and the Newton method. The memory requirement
is much lower due to its simplicity. This property reduces the computing burden when big
data is handled.

However, the efficiency or the convergence speed of the subgradient method is likely to be
affected by pre-defined parameter settings. One always likes to apply the most efficient empir-
ical parameter settings on the specific data set. For example, the efficiency or the convergence
speed is related to the step size (a scalar on the subgradient direction) in the iteration. In
this paper, the impact of the step size parameter in the subgradient equation on the convex
function is studied. Specifically, an application of the subgradient method is conducted with
a p-median problem using Lagrangian relaxation. In this specific application, we study the
impact of the step size parameter on the quality of the solutions.

Methods for solving the p-median problem have been widely studied (see Reese, 2006; Mlade-
nović, 2007; Daskin,1995). Reese (2006) summarized the literature on solution methods by
surveying eight types of methods and listing 132 papers or books. Linear programming (LP)
relaxation accounts for 17.4% among the 132 papers or books. Mladenović (2007) examined
the metaheuristics framework for solving a p-median problem. Metaheuristics has led to sub-
stantial improvement in solution quality when the problem scale is large. The Lagrangian
heuristic is a specific representation of LP and metaheuristics. Daskin (1995) also showed
that the Lagrangian method always gives good solutions compared to constructive methods.

1PhD student in the School of Technology and Business Studies, Dalarna Unversity, Sweden. E-mail:
mea@du.se
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Solving p-median problems by Lagrangian heuristics is often suggested (Beasley, 1993; Daskin,
1995; Beltran, 2004; Avella, 2012; Carrizosa, 2012). The corresponding subgradient optimiza-
tion algorithm has also been suggested. A good solution can always be found by narrowing
the gap between the lower bound (LB) and the best upper bound (BUB). This property
provides an understanding of how good the solution is. The solution can be improved by
increasing the best lower bound (BLB) and decreasing the BUB. This procedure could stop
either when the critical percentage difference between LB and BUB is reached or when the
parameter controlling the LB’s increment becomes trivial. However, the previous studies did
not examine how the LB’s increment affects the quality of the solution. The LB’s increment
is decided by the step size parameter of the subgradient substitution. Given this open ques-
tion, the aim of this paper is to examine how the step size parameter in the subgradient
equation affects the performance of a convex function through a general piecewise example
and several specific p-median problems.

The remaining parts of this paper are sectionally organized into subgradient method and
the impact of step size, p-median problem, computational results and conclusions.

2 Subgradient method and the impact of step size

The subgradient method provides a framework for minimizing a convex function f : Rn → R
by using the iterative equation:

x(k+1) = x(k) − α(k)g(k). (2.1)

In (2.1) x(k) is the kth iteration of the argument x of the function. g(k) is an arbitrary
subgradient of f at x(k). α(k) is the step size. The convergence of (2.1) has been proved by
Shor (1985).

2.1 step size forms

Five typical rules of step size are listed in Stephen and Almir (2008). They can be summarized
as:

• constant size: α(k) = ξ

• constant step length: α(k) = ξ/‖g(k)‖2

• square summable but not summable: α(k) = ξ/(b+ k)

• nonsummable diminishing: α(k) = ξ/
√
k

• nomsummable diminishing step length: α(k) = ξ(k)/‖g(k)‖2
The form of the step size is pre-set and will not change. The top two forms, α(k) = ξ and
α(k) = ξ/‖g(k)‖2, are not examined since they are constant size or step length which are lack
in variation for p-median problem. On the other hand, the bottom three forms are studied.
We restrict ξ(k) such that ξ(k)/‖g(k)‖2 can be represented by an exponential decreasing
function of α(k). Thus, we study α(k) = ξ/k, α(k) = ξ/

√
k, α(k) = ξ/1.05k, α(k) = ξ/2k

and α(k) = ξ/ exp(k) in this paper. We first examine the step size impact on a general
piecewise convex function and then on the p-median problem.
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Figure 1: Objective values of a picewise convex function when five forms of step sizes are compared

2.2 general impact on convex function

We consider the minimization of the function:

f(x) = max
i

(aT
i x+ bi)

where x ∈ Rn and a subgradient g can be taken as g = ∇f(x) = aj (aT
j x + bj maximizes

aT
i x+bi, i = 1, . . . ,m). In our experiment, we take m = 100 and the dimension of x being 10.

Both a ∼MVN(0, I) and b ∼ N(0, 1). The initial value of constant ξ is 1. The initial value
of x is 0. We run the subgradient iteration 1000 times. Figure 1 shows the non-increased
objective values of the function against the number of iterations. The objective value is
taken when there is a improvement in the objective function. Otherwise, it is taken as the
minimum value in the previous iterations.

In Figure 1, α(k) = 1/2k and α(k) = 1/ exp(k) have similar converging patterns and quickly
approach the “optimal” bottom. The convergence speed of α(k) = 1/

√
k is a bit slower,

but it has a steep slope before 100 iterations as well. α(k) = 1/
√
k does not have a fast

improvement after 200 iterations, while α(k) = 1/1.05k has an approximately uniform con-
vergence speed. However, α(k) = 1/

√
k is still far away from the “optimal” bottom. In short,

α(k) = 1/2k and α(k) = 1/ exp(k) provide uniformly good solutions which would be more
efficient when dealing with big data.
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3 p-median problem

An important application of the subgradient method is solving p-median problems. Here,
the p-median problem is formulated by integer linear programming. It is defined as follows.

Minimize:
∑
i

∑
j

hidijYij (3.1)

subject to: ∑
j

Yij = 1 ∀i (3.2)

∑
j

Xj = P (3.3)

Yij −Xj 6 0 ∀i, j (3.4)

Xj = 0, 1 ∀j (3.5)

Yi,j = 0, 1 ∀i, j (3.6)

In (3.1), hi is the weight on each demand point and dij is the cost of the edge. Yij is the
decision variable indicating whether if a trip between node i and j is made or not. Con-
straint (3.2) ensures that every demand point must be assigned to one facility. In (3.3) Xj is
a decision variable and it ensures that the number of facilities to be located is P . Constraint
(3.4) indicates that no demand point i is assigned to j unless there is a facility. In constraint
(3.5) and (3.6) the value 1 means that the locating (X) or travelling (Y ) decision is made. 0
means that the decision is not made.

To solve this problem using the sugradient method, the Lagrangian relaxation must be made.
Since the number of facilities, P , is fixed, we cannot relax the locating decision variable Xj .
Consequently, the relaxation is necessarily put on the travelling decision variable Yij . It could
be made either on (3.2) or on (3.4). In this paper, we only consider the case for (3.2), because
the same procedure would be applied on (3.4). We do not repeat this for (3.4). What we
need to do is to relax this problem for fixed values of the Lagrange multipliers, find primal
feasible solutions from the relaxed solution and improve the Lagrange multipliers (Daskin,
1995). Consider relaxing constraint (3.2), we have

Minimize:
∑
i

∑
j

hidijYij +
∑
i

λi(1−
∑
j

Yij)

=
∑
i

∑
j

(hidij − λi)Yij +
∑
i

λi
(3.7)

with constraints (3.3)–(3.6) unchanged. In order to minimize the objective function for fixed
values of λi, we set Yij = 1 when hidij − λi < 0 and Yij = 0 otherwise. The corresponding
value of Xj is 1. A set of initial values of λis are given by the mean weighted distance between
each node and the demand points.
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Lagrange multipliers are updated in each iteration. The step size value in the kth itera-
tion for the multipliers T (k) is :

T (k) =
α(k)(BUB − L(k))∑

i{
∑

j Y
(k)
ij − 1}2

, (3.8)

where T (k) is the kth step size value; BUB is the minimum upper bound of the objective

function until the kth iteration; L is the value evaluated by (3.7) at the kth iteration;
∑

j Y
(k)
ij

is the current optimal value of the decision variable. The Lagrangian multipliers, λi, are
updated by:

λ
(k+1)
i = max{0, λ(k)i − T (k)(

∑
j

Y
(k)
ij − 1)}. (3.9)

A general working scheme is:

• step 1 Plug the initial values or updated values of λi into (3.7) and identify the p
medians according to hidij − λi;

• step 2 According to p medians in step 1, evaluate the subgradient g(k) = 1 −
∑

j Yij ,

BUB and L(k). If the stopping criteria is met, stop. Otherwise, go to step 3;

• step 3 Update T (k) using (3.8);

• step 4 Update Lagrangian multipliers λ
(k)
i s using (3.9). Then go to step 1 with new

λis.

The lower bound (LB) in each iteration is decided by the value of λis. The step size T (k)

will affect the update speed of λis. It goes to 0 when the number of iterations tends to
infinity. When it goes slowly, the increment of LB would be fast but unstable. This leads to
inaccurate estimates of the LB. On the other hand, when the update speed goes too fast, the
update of LB is slow. The non-update would easily happen such that the difference between
BUB and BLB remains even though more iterations are made. The danger will arise if the
inappropriate step size is computed. Thus, a good choice of executed parameter controlling
the update speed would make the algorithm more efficient.

4 Computational results

In this section, we study the parameter, α, controlling the step size. Daskin (1995) suggested
an initial value of 2 and a halved decreasing factor after 5 failures of changing; Avella (2012)
suggested an initial value of 1.5 and a 1.01 decreasing factor after one failure of changing. We
could also consider other alternative initial values instead of those in the previous studies.
However, that is only a minor issue and not related to the step size function. Thus, we skip
the analysis of the initial values.

The complexity in our study is different from Daskin (1995) and Avella (2012). We take
medium sized problems from the OR-library (Beasley, 1990). The OR-library consists of 40
test p-median problems. The optimal solutions are given. We pick eight cases. N varies
from 100 to 900 and P varies from 5 to 80. A subset is picked in our study by only select-
ing two cases for each N = 100, 200, 400, 800. The parameter α take five forms. Following
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Table 1: Lagrangian settings testing a subset of OR-library

α(k)

form 1: ξ/k

form 2: ξ/
√
k

form 3: ξ/1.05k

form 4: ξ/2k

form 5: ξ/ exp(k)
n (number of failures before changing α) 5
restart the counter when α changed Yes
critical difference 0.01
initial values of λis

∑
j hidijYij/

∑
j

maximum iterations after no improvement on BUB m = 1000 and m = 100

Stephen and Almir (2008), we take the forms of α(k) = ξ/k, α(k) = ξ/
√
k, α(k) = ξ/1.05k,

α(k) = ξ/2k and α(k) = ξ/ exp(k).The procedure settings are shown in Table 1.

In Table 1, α(k) is the step size function of. We take ξ = 1 as we did for the piecewise function
f(x). n is a counter recording the number of 5 consecutive failures. As suggested by Daskin
(1995), we do not further elaborate the impact of the counter. The critical difference takes
the value of 1% of the optimal solution. This is only a criterion for known optimal values
and it can be largely affected by the type of the problem. Considering that, the algorithm
also stops if no improvement of BUB is found after preset number of iterations. Here we
compare 100 and 1,000. Given the settings, the results are shown in Table 2 and Table 3.

In Table 2 and Table 3, optimal solution values are given for two stopping criteria. The
problem complexity varies. We compare different forms of α(k). BLBs (best lower bound),
BUBs (best upper bound), deviations (BUB−Optimal

Optimal × 100%), U/L (BUB
BLB ) and the number of

iterations. The optimal BUB and U/L are marked in bold.

Table 2 shows the solutions for m = 100. For pmed 1 and pmed 6 of the OR-library, the
exact optimal solutions are obtained. For pemd 35, an almost exact solution is also obtained.
On the other hand, for pmed 4, pmed 9, pmed 18 and pmed 37, the BLB is much closer to
the optimal. For most of the cases, the step size function with the minimum U/L ratio gives
the lowest BUB. It is an indication of the good quality of the algorithm even though 1/1.05k

performs very badly in pmed 18 and pmed 37. It is no surprise that more exact solutions
appear when the number of iterations is increased, for example, 1/1.05k in pmed 1 and pmed
6; 1/k in pmed 4 and pmed 35 in Table 3. Similarly, we also improve the quality of BLBs.
The worst deviation is 17.70 for m = 1000 instead of 44.14 for m = 100.

There are several overall tendencies we can draw from Table 2 and Table 3. Firstly, 1/2k and
1/ exp(k) are relatively stable which is also in accordance with piecewise function we studied
before. This can be seen not only for less complicated problem but also for the complicated
case. However, there is no obvious tendency of which one will dominate. Secondly, it is dif-
ficult for 1/

√
k to perform better that the rest of 4 forms to have an optimal BUB, which is
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Table 2: Comparison of optimal solutions for different step size decreasing speed (m = 100)
File No. fn(α) BLB BUB Optimal Deviation (%) U/L Iterations

pmed 1
(N = 100
P = 5)

1/k 5803 5821 5819 0.03 1.003 65

1/
√
k 5811 5821 5819 0.03 1.002 98

1/1.05k 5521 6455 5819 10.93 1.169 103
1/2k 5796 5819 5819 0.00 1.005 46

1/exp(k) 5796 5821 5819 0.03 1.005 53

pmed 4
(N = 100
P = 20)

1/k 3032 3265 3034 7.61 1.077 300

1/
√
k 3030 3297 3034 8.67 1.088 435

1/1.05k 3034 3182 3034 4.88 1.049 535
1/2k 3034 3182 3034 4.88 1.049 249

1/exp(k) 3034 3182 3034 4.88 1.049 164

pmed 6
(N = 200
P = 5)

1/k 7770 8238 7824 5.29 1.060 143

1/
√
k 7760 8195 7824 4.74 1.056 202

1/1.05k 7459 8948 7824 14.37 1.200 153
1/2k 7753 7824 7824 0.00 1.009 145

1/exp(k) 7751 7824 7824 0.00 1.009 56

pmed 9
(N = 200
P = 40)

1/k 2732 3051 2734 11.59 1.117 471

1/
√
k 2719 3264 2734 20.04 1.200 386

1/1.05k 2725 3239 2734 18.47 1.189 451
1/2k 2732 3069 2734 12.25 1.123 282

1/exp(k) 2732 3127 2734 14.37 1.145 297

pmed 16
(N = 400
P = 5)

1/k 8090 8253 8162 1.411 1.020 231

1/
√
k 8086 8240 8162 0.96 1.019 261

1/1.05k 8092 8185 8162 0.28 1.011 534
1/2k 8088 8239 8162 0.94 1.019 210

1/exp(k) 8080 8206 8162 0.54 1.016 156

pmed 18
(N = 400
P = 40)

1/k 4807 5021 4809 4.22 1.043 256

1/
√
k 4801 5150 4809 7.09 1.073 516

1/1.05k 3848 6913 4809 43.75 1.797 101
1/2k 4805 4865 4809 1.16 1.012 216

1/exp(k) 4803 4902 4809 1.93 1.021 269

pmed 35
(N = 800
P = 5)

1/k 10288 10504 10400 0.01 1.021 124

1/
√
k 10296 10401 10400 0.01 1.010 254

1/1.05k 10183 10710 10400 2.98 1.052 144
1/2k 10286 10401 10400 0.01 1.011 201

1/exp(k) 10282 10401 10400 0.01 1.012 239

pmed 37
(N = 800
P = 80)

1/k 5056 5248 5057 3.78 1.038 306

1/
√
k 5033 5577 5057 10.28 1.108 342

1/1.05k 3820 7289 5057 44.14 1.908 101
1/2k 5055 5137 5057 1.58 1.016 314

1/exp(k) 5051 5100 5057 0.85 1.010 161
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Table 3: Comparison of optimal solutions for different step size decreasing speed (m = 1000)
File No. α(k) BLB BUB Optimal Deviation (%) U/L Iterations

pmed 1
(N = 100
P = 5)

1/k 5804 5821 5819 0.03 1.003 65

1/
√
k 5811 5821 5819 0.03 1.002 98

1/1.05k 5815 5819 5819 0.00 1.001 239
1/2k 5796 5819 5819 0.00 1.004 46

1/exp(k) 5796 5821 5819 0.03 1.004 53

pmed 4
(N = 100
P = 20)

1/k 3034 3182 3034 4.88 1.049 1975

1/
√
k 3031 3259 3034 7.42 1.075 1580

1/1.05k 3034 3182 3034 4.88 1.049 1435
1/2k 3034 3182 3034 4.88 1.049 1162

1/exp(k) 3034 3182 3034 4.88 1.049 1064

pmed 6
(N = 200
P = 5)

1/k 7782 8086 7824 3.35 1.039 1417

1/
√
k 7783 7867 7824 0.66 1.011 1853

1/1.05k 7783 7824 7824 0.00 1.005 698
1/2k 7753 7824 7824 0.00 1.009 145

1/exp(k) 7751 7824 7824 0.00 1.009 56

pmed 9
(N = 200
P = 40)

1/k 2733 3051 2734 11.59 1.116 1371

1/
√
k 2720 3217 2734 17.70 1.183 1400

1/1.05k 2734 3098 2734 13.31 1.133 1674
1/2k 2732 3069 2734 12.25 1.123 1182

1/exp(k) 2732 3073 2734 12.40 1.125 1359

pmed 16
(N = 400
P = 5)

1/k 8091 8219 8162 0.70 1.016 1685

1/
√
k 8088 8240 8162 0.96 1.019 1161

1/1.05k 8092 8162 8162 0.00 1.009 859
1/2k 8088 8183 8162 0.26 1.012 1433

1/exp(k) 8080 8206 8162 0.54 1.016 1056

pmed 18
(N = 400
P = 40)

1/k 4808 4943 4809 2.79 1.028 1499

1/
√
k 4807 4957 4809 3.08 1.031 3453

1/1.05k 4809 4894 4809 1.77 1.018 2707
1/2k 4805 4841 4809 0.67 1.007 314

1/exp(k) 4803 4877 4809 1.41 1.015 1726

pmed 35
(N = 800
P = 5)

1/k 10297 10401 10400 0.01 1.010 1453

1/
√
k 10297 10401 10400 0.01 1.010 348

α/1.05k 10302 10481 10400 0.78 1.017 1696
α/2k 10286 10401 10400 0.01 1.011 1011

α/exp(k) 10282 10401 10400 0.01 1.012 1139

pmed 37
(N = 800
P = 80)

1/k 5057 5124 5057 1.32 1.013 1779

1/
√
k 5056 5201 5057 2.85 1.029 3281

1/1.05k 5057 5140 5057 1.64 1.016 2159
1/2k 5055 5123 5057 1.31 1.013 2009

1/exp(k) 5051 5100 5057 0.85 1.010 161
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Figure 2: Changes for BLB and BUB for file No.9 and No.35

in accordance with the piecewise function. One reason is that when the number of iterations
is large, a slightly short step size is required. Too large steps can bring infeasible solutions,
which to some extent enlarge the gaps between BLBs and BUBs. Thirdly, 1/k and 1/1.05k

are too sensitive to the stopping criterion, which is not seen in the general piece wise func-
tion. The decision to stop the algorithm should be very carefully made. One suggested way is
to visualize the convergence curve and to terminate the iteration when the curve becomes flat.

Generally speaking, the BLB and the BUB tend to complement each other. In other words,
one can always make an inference that either the BLB or the BUB would be the benchmark
when there is a gap between BLB and BUB. In Figure 2, for example, two extreme cases
are shown. The grey line represents the optimal value. The left panel shows the first 800
objective values for five forms of step size functions in problem 9 (pmed 9). The right one
shows the values in problem 35 (pmed 35). For pmed 9, the BLBs quickly converge to the
optimal. However, only sub-optimal BUBs are obtained. On the contrary, pmed 35 has good
BUBs and bad BLBs. Thus, either the BLB or BUB is likely to reach the sub-optimal. When
this happens, a complement algorithm could be involved to improve the solution.

5 Conclusion

In this paper, we studied how the decreasing speed of step size in the subgradient optimization
method affects the performance of the convergence. The subgradient optimization method
is simpler in solving linear programming. However, the choice of the step function in the
subgradient equation can bring uncertainties to the solution. Thus, we conduct our study by
examining how the step size function parameter α affects the performance. Both a general
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piecewise function and a specific p-median problem are studied. The p-median problem is
represented by linear programming and the corresponding Lagragian relaxation is added.

We examined five forms of the step size parameters α. One is the square summable but not
summable form α(k) = ξ/(b+ k). One is the nonsummable diminishing form α(k) = ξ/

√
k.

Three are nonsummable diminishing step length forms α(k) = ξ/1.05k, α(k) = ξ/2k and
α(k) = ξ/ exp(k). We evaluated the best upper bound, best lower bound, and the required
iterations to reach our stopping criteria. We have the following conclusions.

Firstly, the nonsummable diminishing step size function α(k) = ξ/
√
k has its limitation

when the number of iterations are large. For both the general piecewise function and the
p-median problem, the nonsummable diminishing step size function performs badly and eas-
ily goes into the suboptimal solution. Two nonsummable diminishing step length functions
α(k) = ξ/2k and α(k) = ξ/ exp(k) have similar behaviors and stable solutions. As long as
the problem is not likely to lead to the suboptimal solutions, step size functions α(k) = ξ/2k

and α(k) = ξ/ exp(k) always give fast convergence for both BLB and BUB. This is found
both in general piecewise function and p-median problems. The square summable but not
summable form α(k) = ξ/(b + k) as well as nonsummable diminishing form α(k) = ξ/1.05k

are unstable. They are also sensitive to the number of iterations.

Secondly, from our empirical result, the quality of the solution will be largely affected by the
specific type of the problem. The problem characteristic may have influence on the difficulties
of avoiding suboptimal solutions. If it is easy to avoid suboptimal solutions for a specific step
size function α, one can make a good inference. On the other hand, if the subgradient method
can always produce the suboptimal solution, a complement algorithm can be considered to
get out from the suboptimal.

Thirdly, the problem complexity has little impact. We cannot assert that good solutions
can be found for a less complex problem and bad solutions for a complex solution for a
subgradient method.
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