Open this publication in new window or tab >>2023 (English)In: International journal of refractory metals & hard materials, ISSN 0263-4368, Vol. 114, article id 106227Article in journal (Refereed) Published
Abstract [en]
Two different grades, WC-20 vol.% Ni and WC-20 vol.% Co cemented carbides, respectively were systematically investigated concerning their microstructure, binder composition, and corrosion behavior. SEM-EBSD analysis verified that both grades have similar WC grain sizes (0.9–1.1 μm). AES analysis confirmed that the binder phase of the respective grade is an alloy of Ni-W and Co-W and that the concentration of W in the Ni- and Co-binder is 21 and 10 at. %, respectively. In synthetic mine water (SMW), the EIS behavior of WC-Ni(W) at the open circuit potential (OCP) conditions was studied for different exposure periods (up to 120 h). The EIS data fitting estimates low capacitance and high charge transfer resistance (Rct) values, which indicate that the passive film formed on WC-Ni(W) is thin and exhibits high corrosion resistance. At the OCP and potentiostatic-passive conditions, SEM investigations confirm the uncorroded microstructure of the WC-Ni(W). The AR-XPS studies confirmed the formation of an extremely thin (0.25 nm) WO3 passive film is responsible for the high corrosion resistance of WC-Ni(W), at OCP conditions. However, above the transpassive potential, the microstructure instability of WC-Ni(W) was observed, i.e., corroded morphology of both WC grains and Ni(W) binder. The electrochemical parameters, Rct, corrosion current density, and charge density values, confirmed that the WC-Ni(W) is a far better alternative than the WC-Co(W) for application in SMW.
Keywords
Cemented carbides, Binder phases, EIS, Corrosion, Passivation, AR-XPS, AES
National Category
Materials Engineering
Identifiers
urn:nbn:se:du-45915 (URN)10.1016/j.ijrmhm.2023.106227 (DOI)001032173200001 ()2-s2.0-85153334592 (Scopus ID)
2023-04-262023-04-262023-08-15Bibliographically approved