du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Feature selection and bleach time modelling of paper pulp using tree based learners
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.ORCID-id: 0000-0002-1429-2345
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.
2016 (engelsk)Inngår i: Web Information Systems Engineering – WISE 2016: 17th International Conference, Shanghai, China, November 8-10, 2016, Proceedings, Part I / [ed] Wojciech CellaryMohamed F. MokbelJianmin WangHua WangRui ZhouYanchun Zhang, China - Shanghai: Springer, 2016, Vol. 10042, s. 385-396Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Paper manufacturing is energy demanding and improvedmodelling of the pulp bleach process is the main non-invasive means ofreducing energy costs. In this paper, time it takes to bleach paper pulpto desired brightness is examined. The model currently used is analysedand benchmarked against two machine learning models (Random Forestand TreeBoost). Results suggests that the current model can be super-seded by the machine learning models and it does not use the optimalcompact subset of features. Despite the differences between the machinelearning models, a feature ranking correlation has been observed for thenew models. One novel, yet unused, feature that both machine learningmodels found to be important is the concentration of bleach agent.

sted, utgiver, år, opplag, sider
China - Shanghai: Springer, 2016. Vol. 10042, s. 385-396
Serie
Lecture Notes in Computer Science, E-ISSN 1611-3349
Emneord [en]
Feature selection, Machine learning, CFS, Random forest, TreeBoost, XGBoost, Paper manufacturing
HSV kategori
Forskningsprogram
Komplexa system - mikrodataanalys
Identifikatorer
URN: urn:nbn:se:du-23410DOI: 10.1007/978-3-319-48743-4_31ISI: 000389505500031ISBN: 978-3-319-48742-7 (tryckt)ISBN: 978-3-319-48743-4 (tryckt)OAI: oai:DiVA.org:du-23410DiVA, id: diva2:1047928
Konferanse
17th International Conference on Web Information Systems Engineering (WISE)
Tilgjengelig fra: 2016-11-19 Laget: 2016-11-19 Sist oppdatert: 2019-10-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Fleyeh, HasanYella, SirilHansson, Karl

Søk i DiVA

Av forfatter/redaktør
Fleyeh, HasanYella, SirilHansson, Karl
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 265 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf