du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Motion sensor-based assessment of Parkinson’s disease motor symptoms during leg agility tests: results from levodopa challenge
Högskolan Dalarna, Akademin Industri och samhälle, Mikrodataanalys.ORCID-id: 0000-0002-1548-5077
Vise andre og tillknytning
2020 (engelsk)Inngår i: IEEE journal of biomedical and health informatics, ISSN 2168-2194, E-ISSN 2168-2208, Vol. 24, nr 1, s. 111-119, artikkel-id 8637809Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Parkinson’s disease (PD) is a degenerative, progressive disorder of the central nervous system that mainly affects motor control. The aim of this study was to develop data-driven methods and test their clinimetric properties to detect and quantify PD motor states using motion sensor data from leg agility tests. Nineteen PD patients were recruited in a levodopa single dose challenge study. PD patients performed leg agility tasks while wearing motion sensors on their lower extremities. Clinical evaluation of video recordings was performed by three movement disorder specialists who used four items from the motor section of the Unified PD Rating Scale (UPDRS), the treatment response scale (TRS) and a dyskinesia score. Using the sensor data, spatiotemporal features were calculated and relevant features were selected by feature selection. Machine learning methods like support vector machines (SVM), decision trees and linear regression, using 10-fold cross validation were trained to predict motor states of the patients. SVM showed the best convergence validity with correlation coefficients of 0.81 to TRS, 0.83 to UPDRS #31 (body bradykinesia and hypokinesia), 0.78 to SUMUPDRS (the sum of the UPDRS items: #26-leg agility, #27-arising from chair and #29-gait), and 0.67 to dyskinesia. Additionally, the SVM-based scores had similar test-retest reliability in relation to clinical ratings. The SVM-based scores were less responsive to treatment effects than the clinical scores, particularly with regards to dyskinesia. In conclusion, the results from this study indicate that using motion sensors during leg agility tests may lead to valid and reliable objective measures of PD motor symptoms.

sted, utgiver, år, opplag, sider
IEEE, 2020. Vol. 24, nr 1, s. 111-119, artikkel-id 8637809
HSV kategori
Forskningsprogram
Komplexa system - mikrodataanalys
Identifikatorer
URN: urn:nbn:se:du-29542DOI: 10.1109/JBHI.2019.2898332ISI: 000506642000012Scopus ID: 2-s2.0-85077669455OAI: oai:DiVA.org:du-29542DiVA, id: diva2:1290650
Tilgjengelig fra: 2019-02-21 Laget: 2019-02-21 Sist oppdatert: 2020-01-28bibliografisk kontrollert

Open Access i DiVA

fulltext(619 kB)92 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 619 kBChecksum SHA-512
ce55c472380290bc5d45baf039f569bded7c19c63c8b7fd1d8fa0a69da917b7553a64d9af0b37d80b05d7f46689ad97a3b2e6b4bd325bd6ce60147e8f960618d
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Aghanavesi, Somayeh

Søk i DiVA

Av forfatter/redaktør
Aghanavesi, Somayeh
Av organisasjonen
I samme tidsskrift
IEEE journal of biomedical and health informatics

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 92 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 706 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf