Dalarna University's logo and link to the university's website

du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Understanding Memories of the Past in the Context of Different Complex Neural Network Architectures.
Michigan State University, Department of Integrative Biology and BEACON Center for the Study of Evolution in Action, East Lansing, U.S.A..
Michigan State University, BEACON Center for the Study of Evolution in Action and Department of Computer Science and Engineering, East Lansing, U.S.A.
Högskolan Dalarna, Institutionen för information och teknik, Mikrodataanalys. Michigan State University, BEACON Center for the Study of Evolution in Action, East Lansing, U.S.A..ORCID-id: 0000-0002-4872-1961
2022 (engelsk)Inngår i: Neural Computation, ISSN 0899-7667, E-ISSN 1530-888X, Vol. 34, nr 3, s. 754-780Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Deep learning (primarily using backpropagation) and neuroevolution are the preeminent methods of optimizing artificial neural networks. However, they often create black boxes that are as hard to understand as the natural brains they seek to mimic. Previous work has identified an information-theoretic tool, referred to as R, which allows us to quantify and identify mental representations in artificial cognitive systems. The use of such measures has allowed us to make previous black boxes more transparent. Here we extend R to not only identify where complex computational systems store memory about their environment but also to differentiate between different time points in the past. We show how this extended measure can identify the location of memory related to past experiences in neural networks optimized by deep learning as well as a genetic algorithm.

sted, utgiver, år, opplag, sider
2022. Vol. 34, nr 3, s. 754-780
Emneord [en]
Neural Networks, Computer; Brain
HSV kategori
Identifikatorer
URN: urn:nbn:se:du-39350DOI: 10.1162/neco_a_01469ISI: 000759801900006PubMedID: 35016223Scopus ID: 2-s2.0-85125212645OAI: oai:DiVA.org:du-39350DiVA, id: diva2:1629612
Tilgjengelig fra: 2022-01-18 Laget: 2022-01-18 Sist oppdatert: 2023-04-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Hintze, Arend

Søk i DiVA

Av forfatter/redaktør
Hintze, Arend
Av organisasjonen
I samme tidsskrift
Neural Computation

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 484 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf