Dalarna University's logo and link to the university's website

du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identification of reindeer fine-scale foraging behaviour using tri-axial accelerometer data.
Swedish University of Agricultural Sciences, Uppsala.
Högskolan Dalarna, Institutionen för information och teknik, Statistik.ORCID-id: 0000-0002-3183-3756
School of Mathematics & Statistics, University of Sheffield, Sheffield, UK.
Swedish University of Agricultural Sciences, Uppsala.
2022 (engelsk)Inngår i: Movement Ecology, E-ISSN 2051-3933, Vol. 10, nr 1, artikkel-id 40Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal functional response to the environment and provide an important indicator of the welfare of both wild and domesticated species. In this study, we illustrate the application of collar-attached acceleration sensors for investigating reindeer fine-scale behaviour. Using data from 19 reindeer, we tested the supervised machine learning algorithms Random forests, Support vector machines, and hidden Markov models to classify reindeer behaviour into seven classes: grazing, browsing low from shrubs or browsing high from trees, inactivity, walking, trotting, and other behaviours. We implemented leave-one-subject-out cross-validation to assess generalizable results on new individuals. Our main results illustrated that hidden Markov models were able to classify collar-attached accelerometer data into all our pre-defined behaviours of reindeer with reasonable accuracy while Random forests and Support vector machines were biased towards dominant classes. Random forests using 5-s windows had the highest overall accuracy (85%), while hidden Markov models were able to best predict individual behaviours and handle rare behaviours such as trotting and browsing high. We conclude that hidden Markov models provide a useful tool to remotely monitor reindeer and potentially other large herbivore species behaviour. These methods will allow us to quantify fine-scale behavioural processes in relation to environmental events.

sted, utgiver, år, opplag, sider
2022. Vol. 10, nr 1, artikkel-id 40
Emneord [en]
Activity recognition, Hidden Markov models, Random forests, Rangifer tarandus, Support vector machines, Tri-axial accelerometer
HSV kategori
Identifikatorer
URN: urn:nbn:se:du-42769DOI: 10.1186/s40462-022-00339-0ISI: 000855816400002PubMedID: 36127747Scopus ID: 2-s2.0-85138410632OAI: oai:DiVA.org:du-42769DiVA, id: diva2:1699163
Tilgjengelig fra: 2022-09-27 Laget: 2022-09-27 Sist oppdatert: 2023-03-17bibliografisk kontrollert

Open Access i DiVA

fulltext(1102 kB)96 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1102 kBChecksum SHA-512
4fc5e6e3ed8e54f89ae916e520292f28b7ea76e92501f4e578a00f2290d4fe58f5000d298e49e3cc4864cd99bd31436680f14347aec3a5583bfa425b8e97eb81
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Alam, Moudud

Søk i DiVA

Av forfatter/redaktør
Alam, Moudud
Av organisasjonen
I samme tidsskrift
Movement Ecology

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 96 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 82 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf