Dalarna University's logo and link to the university's website

du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Understanding and Mitigating Phishing Attacks
Högskolan Dalarna, Institutionen för information och teknik.
2024 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

Phishing is a prevalent cyber-attack method where attackers disguise themselves as trustworthy entities to deceive individuals into divulging sensitive information such as usernames, passwords, and financial details. This study aims to enhance phishing detection and prevention mechanisms by identifying the most significant features that distinguish phishing websites from legitimate ones and by evaluating the effectiveness of different machine learning models in phishing detection. A quantitative data analysis approach was employed, leveraging a dataset from the UCI Machine Learning Repository. The study focused on attributes such as SSL/TLS certificates, URL manipulation, and subdomain usage to identify potential phishing sites. The Random Forest model and Logistic Regression model were compared to determine their accuracy and reliability in detecting phishing websites. The results indicate that the Random Forest model outperforms the Logistic Regression model in terms of precision, recall, F1 score, and accuracy, making it a more robust tool for phishing detection. This research highlights the need for continuous updating of detection models and datasets to keep pace with the evolving tactics of phishing attacks, ultimately contributing to the development of more effective antiphishing strategies. 

sted, utgiver, år, opplag, sider
2024.
Emneord [en]
Phishing, Identity Theft, Phishing Detection, Machine Learning Detection.
HSV kategori
Identifikatorer
URN: urn:nbn:se:du-49037OAI: oai:DiVA.org:du-49037DiVA, id: diva2:1883279
Fag / kurs
Microdata Analysis
Tilgjengelig fra: 2024-07-09 Laget: 2024-07-09

Open Access i DiVA

fulltext(755 kB)439 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 755 kBChecksum SHA-512
d3a1d3e684e3b6cfb4a54051e0ad2e732b03bf7f980513a14dcc5eaeda6b8306dae8a5ec94717cb413f806106712a69cbd74502c5f6f6aaa6759d51d7f70ecfa
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 440 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 569 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf