Dalarna University's logo and link to the university's website

du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Road Sign Recognition based on Invariant Features using Support Vector Machine
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.
2007 (engelsk)Independent thesis Advanced level (degree of Master (Two Years))Oppgave
Abstract [en]

Since last two decades researches have been working on developing systems that can assists drivers in the best way possible and make driving safe. Computer vision has played a crucial part in design of these systems. With the introduction of vision techniques various autonomous and robust real-time traffic automation systems have been designed such as Traffic monitoring, Traffic related parameter estimation and intelligent vehicles. Among these automatic detection and recognition of road signs has became an interesting research topic. The system can assist drivers about signs they don’t recognize before passing them. Aim of this research project is to present an Intelligent Road Sign Recognition System based on state-of-the-art technique, the Support Vector Machine. The project is an extension to the work done at ITS research Platform at Dalarna University [25]. Focus of this research work is on the recognition of road signs under analysis. When classifying an image its location, size and orientation in the image plane are its irrelevant features and one way to get rid of this ambiguity is to extract those features which are invariant under the above mentioned transformation. These invariant features are then used in Support Vector Machine for classification. Support Vector Machine is a supervised learning machine that solves problem in higher dimension with the help of Kernel functions and is best know for classification problems.

sted, utgiver, år, opplag, sider
Borlänge, 2007. , s. 88
Emneord [en]
Speed-limit Recognition, Shape Recognition, Support Vector Machines, Kernel Functions, Invariant Features, Feature space.
Identifikatorer
URN: urn:nbn:se:du-2760OAI: oai:dalea.du.se:2760DiVA, id: diva2:518213
Uppsök
Technology
Veileder
Tilgjengelig fra: 2007-04-18 Laget: 2007-04-18 Sist oppdatert: 2012-04-24bibliografisk kontrollert

Open Access i DiVA

fulltekst(4054 kB)2479 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4054 kBChecksum SHA-512
81ee5a4c0b269b55c58c71d341ac048ed6d1f8fafde2f2742a2f29d0a858af3c71087153e6ce96c030b21b73ae3c89eba1bdcc593772a09c1a8177b0d9d31d4c
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 2479 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 2463 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf