Dalarna University's logo and link to the university's website

du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Phosphocreatine content in single fibers of human muscle after sustained submaximal exercise.
Högskolan Dalarna, Akademin Hälsa och samhälle, Medicinsk vetenskap.ORCID-id: 0000-0003-1619-9758
1997 (engelsk)Inngår i: American Journal of Physiology. Heart and Circulatory Physiology, ISSN 0363-6135, E-ISSN 1522-1539, Vol. 273, s. C172-C178Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The effect of sustained submaximal exercise on muscle energetics has been studied on the single-fiber level in human skeletal muscle. Seven subjects cycled to fatigue (mean 77 min) at a work rate corresponding to approximately 75% of maximal O2 uptake. Biopsies were taken from the vastus lateralis muscle at rest, at fatigue, and after 5 min of recovery. Muscle glycogen decreased from 444 +/- 40 (SE) mmol glucosyl units/kg dry wt at rest to 94 +/- 16. Postexercise glycogen was inversely correlated (P < 0.01) to muscle content of inosine monophosphate, a catabolite of ATP. Phosphocreatine (PCr) in mixed-fiber muscle decreased at fatigue to 37% but was restored above the initial value (106.5%, P < 0.025) after 5 min of recovery. The overshoot was localized to type I fibers. The rapid reversal of PCr is in contrast to the slow recovery in contraction force. Pi increased at fatigue but less than that expected from the changes in PCr and other phosphate compounds. Mean PCr at rest was approximately 20% higher in type II than in type I fibers (86.4 +/- 3.6 and 71.6 +/- 1.8 mmol/kg dry wt, respectively, P < 0.05), but at fatigue similar PCr contents were observed in the two fiber types. Reduction in PCr in all fibers at fatigue suggests that all fibers were recruited at the end of exercise. PCr content in single fibers showed a great variability in samples at rest, exercise, and recovery. The variability was more pronounced than for ATP, and the data suggest that it is due to interfiber physiological-biochemical differences. At fatigue ATP was maintained relatively high in all single fibers, but a pronounced depletion of PCr was observed in a large number of fibers, and this may contribute to fatigue through the associated increases in Pi or/and free ADP. It is noteworthy that the increase in calculated free ADP at fatigue was similar to that after high-intensity exercise.

sted, utgiver, år, opplag, sider
1997. Vol. 273, s. C172-C178
Identifikatorer
URN: urn:nbn:se:du-2331OAI: oai:dalea.du.se:2331DiVA, id: diva2:519731
Tilgjengelig fra: 2006-10-02 Laget: 2006-10-02 Sist oppdatert: 2017-12-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Søk i DiVA

Av forfatter/redaktør
Tonkonogi, Michail
Av organisasjonen
I samme tidsskrift
American Journal of Physiology. Heart and Circulatory Physiology

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 705 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf