du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Classification of speech intelligibility in Parkinson's disease: Speech Impairment Classification
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik. Malardalen University, Vasteras 72123, Sweden. (PAULINA)ORCID-id: 0000-0002-2752-3712
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik. (PAULINA)ORCID-id: 0000-0003-0403-338X
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik. (PAULINA)
2014 (engelsk)Inngår i: Biocybernetics and Biomedical Engineering, ISSN 0208-5216, Vol. 34, nr 1, s. 35-45Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A problem in the clinical assessment of running speech in Parkinson's disease (PD) is to track underlying deficits in a number of speech components including respiration, phonation, articulation and prosody, each of which disturbs the speech intelligibility. A set of 13 features, including the cepstral separation difference and Mel-frequency cepstral coefficients were computed to represent deficits in each individual speech component. These features were then used in training a support vector machine (SVM) using n-fold cross validation. The dataset used for method development and evaluation consisted of 240 running speech samples recorded from 60 PD patients and 20 healthy controls. These speech samples were clinically rated using the Unified Parkinson's Disease Rating Scale Motor Examination of Speech (UPDRS-S). The classification accuracy of SVM was 85% in 3 levels of UPDRS-S scale and 92% in 2 levels with the average area under the ROC (receiver operating characteristic) curves of around 91%. The strong classification ability of selected features and the SVM model supports suitability of this scheme to monitor speech symptoms in PD

sted, utgiver, år, opplag, sider
Elsevier, 2014. Vol. 34, nr 1, s. 35-45
Emneord [en]
Parkinson's disease, Speech processing, Dysarthria, Support vector machine, Tele-monitoring.
HSV kategori
Forskningsprogram
Komplexa system - mikrodataanalys, PAULINA - Uppföljning av Parkinsonsymptom från hemmet
Identifikatorer
URN: urn:nbn:se:du-13130DOI: 10.1016/j.bbe.2013.10.003ISI: 000333226500006OAI: oai:DiVA.org:du-13130DiVA, id: diva2:655236
Prosjekter
PAULINA
Forskningsfinansiär
Knowledge FoundationTilgjengelig fra: 2013-10-10 Laget: 2013-10-10 Sist oppdatert: 2015-07-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Khan, TahaWestin, Jerker

Søk i DiVA

Av forfatter/redaktør
Khan, TahaWestin, JerkerDougherty, Mark
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 681 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf