du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A case study in healthcare informatics: a telemedicine framework for automated parkinson’s disease symptom assessment
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.ORCID-id: 0000-0002-2752-3712
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.ORCID-id: 0000-0002-2372-4226
Högskolan Dalarna, Akademin Industri och samhälle, Informatik.ORCID-id: 0000-0003-3681-8173
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.ORCID-id: 0000-0003-0403-338X
2014 (engelsk)Inngår i: Smart Health: International Conference, ICSH 2014, Beijing, China, July 10-11, 2014. Proceedings / [ed] Zheng X. et al., Springer, 2014, s. 197-199Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper reports the development and evaluation of a mobile-based telemedicine framework for enabling remote monitoring of Parkinson’s disease (PD) symptoms. The system consists of different measurement devices for remote collection, processing and presentation of symptom data of advanced PD patients. Different numerical analysis techniques were applied on the raw symptom data to extract clinically symptom information which in turn were then used in a machine learning process to be mapped to the standard clinician-based measures. The methods for quantitative and automatic assessment of symptoms were then evaluated for their clinimetric properties such as validity, reliability and sensitivity to change. Results from several studies indicate that the methods had good metrics suggesting that they are appropriate to quantitatively and objectively assess the severity of motor impairments of PD patients.

sted, utgiver, år, opplag, sider
Springer, 2014. s. 197-199
Serie
Lecture Notes in Computer Science, ISSN 0302-9743 ; 8549
Emneord [en]
patient monitoring, Parkinson’s disease, sensors, machine learning, healthcare informatics, artificial intelligence
HSV kategori
Forskningsprogram
Komplexa system - mikrodataanalys, PAULINA - Uppföljning av Parkinsonsymptom från hemmet
Identifikatorer
URN: urn:nbn:se:du-15069ISBN: 978-3-319-08416-9 (tryckt)OAI: oai:DiVA.org:du-15069DiVA, id: diva2:741116
Konferanse
International Conference, ICSH 2014, Beijing, China, July 10-11, 2014
Forskningsfinansiär
Knowledge Foundation, 20130041Tilgjengelig fra: 2014-08-27 Laget: 2014-08-27 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Khan, TahaMemedi, MevludinSong, William WeiWestin, Jerker

Søk i DiVA

Av forfatter/redaktør
Khan, TahaMemedi, MevludinSong, William WeiWestin, Jerker
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 905 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf