du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A graph-based comprehensive reputation model: exploiting the social context of opinions to enhance trust in social commerce
Högskolan Dalarna, Akademin Industri och samhälle, Informatik.ORCID-id: 0000-0003-3681-8173
Vise andre og tillknytning
2015 (engelsk)Inngår i: Information Sciences, ISSN 0020-0255, E-ISSN 1872-6291, Vol. 318, s. 51-72Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Social commerce is a promising new paradigm of e-commerce. Given the open and dynamic nature of social media infrastructure, the governance structures of social commerce are usually realized through reputation mechanisms. However, the existing approaches to the prediction of trust in future interactions are based on personal observations and/or publicly shared information in social commerce application. As a result, the indications are unreliable and biased because of limited first-hand information and stake-holder manipulation for personal strategic interests. Methods that extract trust values from social links among users can improve the performance of reputation mechanisms. Nonetheless, these links may not always be available and are typically sparse in social commerce, especially for new users. Thus, this study proposes a new graph-based comprehensive reputation model to build trust by fully exploiting the social context of opinions based on the activities and relationship networks of opinion contributors. The proposed model incorporates the behavioral activities and social relationship reputations of users to combat the scarcity of first-hand information and identifies a set of critical trust factors to mitigate the subjectivity of opinions and the dynamics of behaviors. Furthermore, we enhance the model by developing a novel deception filtering approach to discard "bad-mouthing" opinions and by exploiting a personalized direct distrust (risk) metric to identify malicious providers. Experimental results show that the proposed reputation model can outperform other trust and reputation models in most cases. (C) 2014 Elsevier Inc. All rights reserved.

sted, utgiver, år, opplag, sider
2015. Vol. 318, s. 51-72
Emneord [en]
Social commerce, Reputation, Social context, Risk tolerance
HSV kategori
Forskningsprogram
Komplexa system - mikrodataanalys
Identifikatorer
URN: urn:nbn:se:du-18932DOI: 10.1016/j.ins.2014.09.036ISI: 000357707600005OAI: oai:DiVA.org:du-18932DiVA, id: diva2:843732
Tilgjengelig fra: 2015-07-31 Laget: 2015-07-31 Sist oppdatert: 2018-01-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Song, William Wei

Søk i DiVA

Av forfatter/redaktør
Song, William Wei
Av organisasjonen
I samme tidsskrift
Information Sciences

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 565 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf