du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Parking Occupancy Detection Using Thermal Camera
Högskolan Dalarna, Akademin Industri och samhälle, Mikrodataanalys.ORCID-id: 0000-0002-2078-3327
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.ORCID-id: 0000-0002-1429-2345
2019 (engelsk)Inngår i: Proceedings of the 5th International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS, 2019, s. 483-490Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Parking a vehicle is a daunting task during peak hours. The search for a parking space leads to congestion and increased air pollution. Information of a vacant parking space would facilitate to reduce congestion and subsequent air pollution. This paper aims to identify parking occupancy in an open parking lot which consists of free parking spaces using a thermal camera. A thermal camera is capable of detecting vehicles in any weather and light conditions based on emitted heat and it can also be installed in public places with less restrictions. However, a thermal camera is expensive compared to a colour camera. A thermal camera can detect vehicles based on the emitted heat without any illumination. Vehicles appear bright or dark based on heat emitted by the vehicles. In order to identify vehicles, pre-trained vehicle detection algorithms, Histogram of Oriented Gradient detectors, Faster Regional Convolutional Neural Network (FRCNN) and modified Faster RCNN deep learning networks were implemented in this paper. The detection rates of the detectors reduced with diminishing of heat in the vehicles. Modified Faster RCNN deep learning network produced better detection results compared to other detectors. However, the detection rates can further be improved with larger and diverse training dataset.

sted, utgiver, år, opplag, sider
2019. s. 483-490
Emneord [en]
Convolutional Neural Network, Detectors, Thermal Camera
HSV kategori
Forskningsprogram
Komplexa system - mikrodataanalys
Identifikatorer
URN: urn:nbn:se:du-30153DOI: 10.5220/0007726804830490Scopus ID: 2-s2.0-85067576912ISBN: 978-989-758-374-2 (tryckt)OAI: oai:DiVA.org:du-30153DiVA, id: diva2:1321752
Konferanse
5th International Conference on Vehicle Technology and Intelligent Transport Systems, May 3-5 2019, Heraklion, Greece
Tilgjengelig fra: 2019-06-10 Laget: 2019-06-10 Sist oppdatert: 2019-07-01bibliografisk kontrollert

Open Access i DiVA

Parking occupancy detection(697 kB)110 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 697 kBChecksum SHA-512
10adcdcac708e779cf6051cc736b6c0ce43eef149ef21978895c1c9ea5e06f4126f6762d8f7eb703f1bb5a3cad200cb3a85ec578aee1b7e611c2ee7d15844e7f
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Paidi, VijayFleyeh, Hasan

Søk i DiVA

Av forfatter/redaktør
Paidi, VijayFleyeh, Hasan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 110 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 296 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf