du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Response-surface-model-based system sizing for Nearly/Net zero energy buildings under uncertainty
City University of Hong Kong.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 228, s. 1020-1031Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Properly treating uncertainty is critical for robust system sizing of nearly/net zero energy buildings (ZEBs). To treat uncertainty, the conventional method conducts Monte Carlo simulations for thousands of possible design options, which inevitably leads to computation load that is heavy or even impossible to handle. In order to reduce the number of Monte Carlo simulations, this study proposes a response-surface-model-based system sizing method. The response surface models of design criteria (i.e., the annual energy match ratio, self-consumption ratio and initial investment) are established based on Monte Carlo simulations for 29 specific design points which are determined by Box-Behnken design. With the response surface models, the overall performances (i.e., the weighted performance of the design criteria) of all design options (i.e., sizing combinations of photovoltaic, wind turbine and electric storage) are evaluated, and the design option with the maximal overall performance is finally selected. Cases studies with 1331 design options have validated the proposed method for 10,000 randomly produced decision scenarios (i.e., users’ preferences to the design criteria). The results show that the established response surface models reasonably predict the design criteria with errors no greater than 3.5% at a cumulative probability of 95%. The proposed method reduces the number of Monte Carlos simulations by 97.8%, and robustly sorts out top 1.1% design options in expectation. With the largely reduced Monte Carlo simulations and high overall performance of the selected design option, the proposed method provides a practical and efficient means for system sizing of nearly/net ZEBs under uncertainty.

Ort, förlag, år, upplaga, sidor
2018. Vol. 228, s. 1020-1031
Nyckelord [en]
Response surface model, Monte Carlo simulation, System sizing, Zero energy building, Uncertainty
Nationell ämneskategori
Husbyggnad
Identifikatorer
URN: urn:nbn:se:du-30837DOI: 10.1016/j.apenergy.2018.06.156OAI: oai:DiVA.org:du-30837DiVA, id: diva2:1355749
Tillgänglig från: 2019-09-30 Skapad: 2019-09-30 Senast uppdaterad: 2019-10-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltexthttp://www.sciencedirect.com/science/article/pii/S0306261918310262

Personposter BETA

Huang, Pei

Sök vidare i DiVA

Av författaren/redaktören
Huang, Pei
I samma tidskrift
Applied Energy
Husbyggnad

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf