du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Analyzing automatic cow recordings to detect the presence of outliers in feed intake data recorded from dairy cows in Lovsta farm
Högskolan Dalarna, Akademin Industri och samhälle, Mikrodataanalys.
2016 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Outliers are a major concern in data quality as it limits the reliability of any data. The

objective of our investigation was to examine the presence and cause of outliers in the system

for controlling and recording the feed intake of dairy cows in Lovsta farm, Uppsala Sweden.

The analyses were made on data recorded as a timestamp of each visit of the cows to

the feeding troughs from the period of August 2015 to January 2016. A three step

methodology was applied to this data. The first step was fitting a mixed model to the

data then the resulting residuals was used in the second step to fit a model based

clustering for Gaussian mixture distribution which resulted in clusters of which 2.5% of

the observations were in the outlier cluster. Finally, as the third step, a logistic

regression was then fit modelling the presence of outliers versus the non-outlier

clusters. It appeared that on early hours of the morning between 6am to 11.59am, there

is a high possibility of recorded values to be outliers with odds ratio of 1.1227 and this

is also the same time frame noted to have the least activity in feed consumption of the

cows with a decrease of 0.027 kilograms as compared to the other timeframes. These

findings provide a basis for further investigation to more specifically narrow down the

causes of the outliers.

Ort, förlag, år, upplaga, sidor
2016.
Nyckelord [en]
Outlier detection, Anomaly, Feed, Forage, Silage, Trough
Nationell ämneskategori
Annan data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:du-24522OAI: oai:DiVA.org:du-24522DiVA, id: diva2:1080297
Tillgänglig från: 2017-03-09 Skapad: 2017-03-09 Senast uppdaterad: 2018-01-13

Open Access i DiVA

fulltext(1433 kB)45 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1433 kBChecksumma SHA-512
ad9701293c2405b8ea35544875ba542f0f59d1f7daba1a3c020795b0b6e3629e85ad44c321c8224a3a9c23c3bb1321665fe4911314ae66475c98175cc2f21d49
Typ fulltextMimetyp application/pdf

Av organisationen
Mikrodataanalys
Annan data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 45 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 84 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf