du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detecting road pavement deterioration with finite mixture models
Högskolan Dalarna, Akademin Industri och samhälle, Mikrodataanalys.
Högskolan Dalarna, Akademin Industri och samhälle, Statistik.ORCID-id: 0000-0002-3183-3756
2017 (Engelska)Ingår i: The international journal of pavement engineering, ISSN 1029-8436, E-ISSN 1477-268X, 1-8 s.Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

Budget restrictions often limit the number of possible maintenance activities in a road network each year. To effectively allocate resources, the rate of road pavement deterioration is of great importance. If two maintenance candidates have an equivalent condition, it is reasonable to maintain the segment with the highest deterioration rate first. To identify such segments, finite mixture models were applied to road condition data from a part of the M4 highway in England. Assuming that data originates from two different normal distributions – defined as a ‘change’ distribution and an ‘unchanged’ distribution – all road segments were classified into one of the groups. Comparisons with known measurement errors and maintenance records showed that segments in the unchanged group had a stationary road condition. Segments classified into the change group showed either a rapid deterioration, improvement in condition because of previous maintenance or unusual measurement errors. Together with additional information from maintenance records, finite mixture models can identify segments with the most rapid deterioration rate, and contribute to more efficient maintenance decisions.

Ort, förlag, år, upplaga, sidor
2017. 1-8 s.
Nyckelord [en]
Finite mixture models, pavement deterioration, road maintenance
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
Komplexa system - mikrodataanalys
Identifikatorer
URN: urn:nbn:se:du-24767DOI: 10.1080/10298436.2017.1309193Scopus ID: 2-s2.0-85017252284OAI: oai:DiVA.org:du-24767DiVA: diva2:1090444
Tillgänglig från: 2017-04-24 Skapad: 2017-04-24 Senast uppdaterad: 2017-11-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Svenson, KristinAlam, Moudud

Sök vidare i DiVA

Av författaren/redaktören
Svenson, KristinAlam, Moudud
Av organisationen
MikrodataanalysStatistik
I samma tidskrift
The international journal of pavement engineering
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 50 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf