du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A review of data-driven approaches for prediction and classification of building energy consumption
Högskolan Dalarna, Akademin Industri och samhälle, Energiteknik.ORCID-id: 0000-0002-2369-0169
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 82, nr 1, s. 1027-1047Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A recent surge of interest in building energy consumption has generated a tremendous amount of energy data, which boosts the data-driven algorithms for broad application throughout the building industry. This article reviews the prevailing data-driven approaches used in building energy analysis under different archetypes and granularities, including those methods for prediction (artificial neural networks, support vector machines, statistical regression, decision tree and genetic algorithm) and those methods for classification (K-mean clustering, self-organizing map and hierarchy clustering). The review results demonstrate that the data-driven approaches have well addressed a large variety of building energy related applications, such as load forecasting and prediction, energy pattern profiling, regional energy-consumption mapping, benchmarking for building stocks, global retrofit strategies and guideline making etc. Significantly, this review refines a few key tasks for modification of the data-driven approaches in the context of application to building energy analysis. The conclusions drawn in this review could facilitate future micro-scale changes of energy use for a particular building through the appropriate retrofit and the inclusion of renewable energy technologies. It also paves an avenue to explore potential in macro-scale energy-reduction with consideration of customer demands. All these will be useful to establish a better long-term strategy for urban sustainability.

Ort, förlag, år, upplaga, sidor
Elsevier, 2018. Vol. 82, nr 1, s. 1027-1047
Nyckelord [en]
Data driven approach, Building, Energy consumption, Prediction, Classification
Nationell ämneskategori
Energiteknik
Forskningsämne
Energi, skog och byggd miljö
Identifikatorer
URN: urn:nbn:se:du-26385DOI: 10.1016/j.rser.2017.09.108Scopus ID: 2-s2.0-85030703701OAI: oai:DiVA.org:du-26385DiVA, id: diva2:1147985
Tillgänglig från: 2017-10-09 Skapad: 2017-10-09 Senast uppdaterad: 2017-11-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Zhang, XingxingHan, MengjieZhao, Xiaoyun

Sök vidare i DiVA

Av författaren/redaktören
Zhang, XingxingHan, MengjieZhao, Xiaoyun
Av organisationen
EnergiteknikMikrodataanalys
I samma tidskrift
Renewable & sustainable energy reviews
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1190 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf