Högskolan Dalarnas logga och länk till högskolans webbplats

du.sePublikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Exploration of an Automated Motivation Letter Scoring System to Emulate Human Judgement
Högskolan Dalarna, Akademin Industri och samhälle, Mikrodataanalys.
Högskolan Dalarna, Akademin Industri och samhälle, Mikrodataanalys.
2020 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

As the popularity of the master’s in data science at Dalarna University increases, so does the number of applicants. The aim of this thesis was to explore different approaches to provide an automated motivation letter scoring system which could emulate the human judgement and automate the process of candidate selection. Several steps such as image processing and text processing were required to enable the authors to retrieve numerous features which could lead to the identification of the factors graded by the program managers. Grammatical based features and Advanced textual features were extracted from the motivation letters followed by the application of Topic Modelling methods to extract the probability of each topics occurring within a motivation letter. Furthermore, correlation analysis was applied to quantify the association between the features and the different factors graded by the program managers, followed by Ordinal Logistic Regression and Random Forest to build models with the most impactful variables. Finally, Naïve Bayes Algorithm, Random Forest and Support Vector Machine were used, first for classification and then for prediction purposes. These results were not promising as the factors were not accurately identified. Nevertheless, the authors suspected that the factors may be strongly related to the highlight of specific topics within a motivation letter which can lead to further research.

Ort, förlag, år, upplaga, sidor
2020.
Nyckelord [en]
Natural Language Processing, Machine Learning, Supervised Learning, Unsupervised Learning, Automation, Feature Extraction, Image Processing, Text Processing, Text Exploration, Motivation Letter, Dalarna University, Student Application, Topic Modelling, Business Intelligence, Data Science
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:du-34563OAI: oai:DiVA.org:du-34563DiVA, id: diva2:1452809
Tillgänglig från: 2020-07-07 Skapad: 2020-07-07

Open Access i DiVA

fulltext(1359 kB)441 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1359 kBChecksumma SHA-512
f411f5c924a7e10e90bda05d739de2a00c8f8e4709a5f67ddce845b5cf71e229374191ba72f5015442f72caf4aefa1d21641fd30040c487d9d6895c7b6a59712
Typ fulltextMimetyp application/pdf

Av organisationen
Mikrodataanalys
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 441 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1392 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf