Högskolan Dalarnas logga och länk till högskolans webbplats

du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Comparative Analysis of Three Types of Facial Recognition Models in OpenCV: Utilising normalised and non-normalised training data
Högskolan Dalarna, Institutionen för information och teknik, Informatik.
Högskolan Dalarna, Institutionen för information och teknik, Informatik.
Högskolan Dalarna, Institutionen för information och teknik, Informatik.
2022 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
Abstract [en]

Background: Today, many offices are implementing smart solutions, including cloud services and the Internet of Things. One piece of technology many have found interesting is the use of facial recognition. Deciding which approach to choose to tackle this is unclear. Aim: The aim is to find what implementation and what configuration of that implementation yields the highest accuracy and speed. Method: Two sets of training data were generated. The first set were images of the subjects taken in a non-normalised manner and the second set were images taken in a normalised manner. After training the models, we had the subjects walk past the camera one by one and compared the number of true positive predictions compared to the total amount of frames the subject appeared in, as well as compared the delay between the frames. Results: On non-normalised training data, both Eigenface and Fisherface saw a drop in accuracy when the number of training images increased, LBPH instead saw an increase in accuracy with the same training. No humanly perceptible difference in delay was seen in any model. On normalised data, Eigenface again saw a drop in accuracy, but was now instead joined by LBPH. Fisherface initially performed well in one trained image, performed worse in two training images, and then reached its highest performance on five training images. Conclusions: When implementing face recognition in a limited environment, using models based on LBPH is preferable and will yield the highest prediction accuracy. Implications: The presented research is to be seen as a roadmap or subject to research further on when companies seek to implement face recognition.

Ort, förlag, år, upplaga, sidor
2022.
Nyckelord [en]
face recognition, pattern recognition, machine learning, models, algorithm, artificial intelligence, and implementation
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik
Identifikatorer
URN: urn:nbn:se:du-41980OAI: oai:DiVA.org:du-41980DiVA, id: diva2:1684666
Ämne / kurs
Informatik
Tillgänglig från: 2022-07-27 Skapad: 2022-07-27

Open Access i DiVA

Fulltext saknas i DiVA

Av organisationen
Informatik
Systemvetenskap, informationssystem och informatik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 523 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf