Högskolan Dalarnas logga och länk till högskolans webbplats

du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Non-stationary Feature Extraction Techniques for Automatic Classification of Impact Acoustic Signals
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.
2008 (Engelska)Studentuppsats (Examensarbete)
Abstract [en]

In this work, a pattern recognition technique has been proposed to automate the process of investigating the condition of wooden railway sleeper. Condition monitoring of wooden railway sleeper is mainly performed by visual inspection and also some impact acoustics tests are manually done. Though the manual procedure uses non-destructive testing methods (visual and sound analysis), decision making is largely based on intuition; moreover the process is rather slow, expensive and also requires skilled and trained staff. Impact acoustic signals have been collected from wooden railway sleepers for the purpose of achieving automation. Given the non-stationary nature of such impact acoustics signals, emphasis in this work has only been laid on non-stationary feature extraction techniques such as Short-Time Fourier Transform and Discrete Wavelet Transform. With the help of these techniques the signals can be analyzed in both time and frequency domains. Different combinations of these techniques have been tested against classifiers such as Multilayer Perceptron, Support Vector Machine and Radial Basis Function. Data fusion was investigated on mainly two levels namely feature-level and classifier-level with an aim of getting more reliable and robust results. Experimental results demonstrate that a classification accuracy of around 84% could be achieved by fusing data at the classifier level.

Ort, förlag, år, upplaga, sidor
2008.
Nyckelord [en]
Short Time Fourier Transform, Discrete Wavelet Transform, Multilayer Perceptron, Support Vector Machine, Radial Basis Function Neural Network, Data Fusion
Identifikatorer
URN: urn:nbn:se:du-3469OAI: oai:dalea.du.se:3469DiVA, id: diva2:518460
Uppsök
teknik
Handledare
Tillgänglig från: 2008-11-01 Skapad: 2008-11-01 Senast uppdaterad: 2012-04-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Av organisationen
Datateknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 158 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf