Högskolan Dalarnas logga och länk till högskolans webbplats

du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Real-Time Recognition System for Traffic Signs
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.
2008 (Engelska)Självständigt arbete på avancerad nivå (masterexamen)Studentuppsats (Examensarbete)
Abstract [en]

The aim of this thesis project is to develop the Traffic Sign Recognition algorithm for real time. In real time environment, vehicles move at high speed on roads. For the vehicle intelligent system it becomes essential to detect, process and recognize the traffic sign which is coming in front of vehicle with high relative velocity, at the right time, so that the driver would be able to pro-act simultaneously on instructions given in the Traffic Sign. The system assists drivers about traffic signs they did not recognize before passing them. With the Traffic Sign Recognition system, the vehicle becomes aware of the traffic environment and reacts according to the situation. The objective of the project is to develop a system which can recognize the traffic signs in real time. The three target parameters are the system’s response time in real-time video streaming, the traffic sign recognition speed in still images and the recognition accuracy. The system consists of three processes; the traffic sign detection, the traffic sign recognition and the traffic sign tracking. The detection process uses physical properties of traffic signs based on a priori knowledge to detect road signs. It generates the road sign image as the input to the recognition process. The recognition process is implemented using the Pattern Matching algorithm. The system was first tested on stationary images where it showed on average 97% accuracy with the average processing time of 0.15 seconds for traffic sign recognition. This procedure was then applied to the real time video streaming. Finally the tracking of traffic signs was developed using Blob tracking which showed the average recognition accuracy to 95% in real time and improved the system’s average response time to 0.04 seconds. This project has been implemented in C-language using the Open Computer Vision Library.

Ort, förlag, år, upplaga, sidor
Borlänge, 2008. , s. 87
Nyckelord [en]
recognition, traffic signs, realtime
Identifikatorer
URN: urn:nbn:se:du-3486OAI: oai:dalea.du.se:3486DiVA, id: diva2:518463
Uppsök
teknik
Handledare
Tillgänglig från: 2008-11-19 Skapad: 2008-11-19 Senast uppdaterad: 2012-04-24Bibliografiskt granskad

Open Access i DiVA

fulltext(1316 kB)4081 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1316 kBChecksumma SHA-512
44925e79279225f83b4b93603a855318e9edac3726125fdef653107c3aad20a97c041d0823b2681a36306be3bbef2406892de8d1ed8d74b257235d82453ae56c
Typ fulltextMimetyp application/pdf

Av organisationen
Datateknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 4099 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1450 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf