Högskolan Dalarnas logga och länk till högskolans webbplats

du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Pattern recognition approach for the automatic classification of data from impact acoustics
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.
2006 (Engelska)Ingår i: IASTED International Conference on Artificial Intelligence and Soft Computing, Palma de Mallorca, 2006Konferensbidrag, Publicerat paper (Övrigt vetenskapligt) Published
Abstract [en]

This paper addresses and deals with the problem of automating condition monitoring of wood in the transportation domain. Current day condition monitoring applications involving wood are mostly carried out through visual inspection and if necessary some impact acoustic examination is carried out. These inspections are mostly done intuitively by skilled personnel. Hence, it is desired to automate such intuitive human skills for the development of more robust and reliable testing methods. Data resulting from impact acoustics tests made on wooden beams has been used. The relation between condition of the wooden beam and their respective emissions has been analyzed experimentally applying different feature extraction techniques. Combining the usage of traditional frequency extraction techniques like the magnitude of the signal together with famous speech recognition techniques like Cepstral Coefficients, Linear Predictive Coding yield good results. Effect of using classifiers like Gaussian Mixture Models and Learning Vector Quantization has been tested and compared. In the current case Gaussian mixture model seem to achieve higher classification rates than Learning Vector Quantization model.

Ort, förlag, år, upplaga, sidor
Palma de Mallorca, 2006.
Nyckelord [en]
Intelligent Transportation Systems, Pattern Recognition, Impact Acoustics, Gaussian Mixture Models, Learning Vector Quantization, NDT
Forskningsämne
Komplexa system - mikrodataanalys, Automatisk inspektion av järnvägsslipers
Identifikatorer
URN: urn:nbn:se:du-2706OAI: oai:dalea.du.se:2706DiVA, id: diva2:521725
Konferens
IASTED International Conference on Artificial Intelligence and Soft Computing , Palma de Mallorca, 2006
Tillgänglig från: 2007-04-10 Skapad: 2007-04-10 Senast uppdaterad: 2021-11-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Sök vidare i DiVA

Av författaren/redaktören
Yella, Siril
Av organisationen
Datateknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 747 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf