du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Machine vision for analysing the position of fastening nails on wooden railway sleepers
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.
2011 (Engelska)Ingår i: Signal and Image Processing, 2011 / [ed] Rao, K.R., Dallas, Texas, USA, 2011Konferensbidrag, Muntlig presentation med publicerat abstract (Refereegranskat)
Abstract [en]

Wooden railway sleeper inspections in Sweden and to a large extent elsewhere are carried out manually by a human operator; visual inspection being the most common approach. Manually inspecting railway sleepers is slow and time consuming. Machine vision algorithms investigating surface cracks on the sleeper and sinking of the metal plate have been studied for the purpose of automating the task. In this particular article, information concerning how far the fastening nail has lifted out of position is investigated with an aim of using such information while assessing the condition of the sleeper. Laser beams incident on the sleeper have been used to highlight the geometrical form of the sleeper/plate/nail complex. Digital images of the nail were acquired mimic human visual capabilities. Appropriate image analysis techniques were applied to further process the images and necessary features were extracted. Results of unsupervised learning, achieved in the current work indicate that expectation maximization algorithm produced reliable results.

Ort, förlag, år, upplaga, sidor
Dallas, Texas, USA, 2011.
Nyckelord [en]
Wooden railway sleepers, Machine vision, Condition Monitoring, Laser beam, Clustering, Unsupervised learning
Nationell ämneskategori
Teknik och teknologier
Forskningsämne
Komplexa system - mikrodataanalys, Automatisk inspektion av järnvägsslipers
Identifikatorer
URN: urn:nbn:se:du-6031DOI: 10.2316/P.2011.759-051ISBN: 978-0-88986-918-9 (tryckt)OAI: oai:dalea.du.se:6031DiVA, id: diva2:522440
Konferens
IASTED conference on Signal and Image processing , Dallas, Texas, USA, 14-16 December, 2011
Tillgänglig från: 2011-11-01 Skapad: 2011-11-01 Senast uppdaterad: 2012-08-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Yella, SirilDougherty, Mark
Av organisationen
Datateknik
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 690 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf