du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Testing common nonlinear features in vector nonlinear autoregressive models
Högskolan Dalarna, Akademin Industri och samhälle, Statistik.
Högskolan Dalarna, Akademin Industri och samhälle, Statistik.
2012 (Engelska)Rapport (Övrigt vetenskapligt)
Abstract [en]

This paper studies a special class of vector smooth-transition autoregressive (VSTAR) models that contains common nonlinear features (CNFs), for which we proposed a triangular representation and developed a procedure of testing CNFs in a VSTAR model. We first test a unit root against a stable STAR process for each individual time series and then examine whether CNFs exist in the system by Lagrange Multiplier (LM) test if unit root is rejected in the first step. The LM test has standard Chi-squared asymptotic distribution. The critical values of our unit root tests and small-sample properties of the F form of our LM test are studied by Monte Carlo simulations. We illustrate how to test and model CNFs using the monthly growth of consumption and income data of United States (1985:1 to 2011:11).

Ort, förlag, år, upplaga, sidor
2012.
Serie
Working papers in transport, tourism, information technology and microdata analysis, ISSN 1650-5581 ; 2012:4
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
Komplexa system - mikrodataanalys
Identifikatorer
URN: urn:nbn:se:du-11114OAI: oai:DiVA.org:du-11114DiVA, id: diva2:562683
Tillgänglig från: 2012-10-30 Skapad: 2012-10-25 Senast uppdaterad: 2013-11-11Bibliografiskt granskad
Ingår i avhandling
1. Common Features in Vector Nonlinear Time Series Models
Öppna denna publikation i ny flik eller fönster >>Common Features in Vector Nonlinear Time Series Models
2013 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis consists of four manuscripts in the area of nonlinear time series econometrics on topics of testing, modeling and forecasting nonlinear common features. The aim of this thesis is to develop new econometric contributions for hypothesis testing and forecasting in these area.

Both stationary and nonstationary time series are concerned. A definition of common features is proposed in an appropriate way to each class. Based on the definition, a vector nonlinear time series model with common features is set up for testing for common features. The proposed models are available for forecasting as well after being well specified.

The first paper addresses a testing procedure on nonstationary time series. A class of nonlinear cointegration, smooth-transition (ST) cointegration, is examined. The ST cointegration nests the previously developed linear and threshold cointegration. An Ftypetest for examining the ST cointegration is derived when stationary transition variables are imposed rather than nonstationary variables. Later ones drive the test standard, while the former ones make the test nonstandard. This has important implications for empirical work. It is crucial to distinguish between the cases with stationary and nonstationary transition variables so that the correct test can be used. The second and the fourth papers develop testing approaches for stationary time series. In particular, the vector ST autoregressive (VSTAR) model is extended to allow for common nonlinear features (CNFs). These two papers propose a modeling procedure and derive tests for the presence of CNFs. Including model specification using the testing contributions above, the third paper considers forecasting with vector nonlinear time series models and extends the procedures available for univariate nonlinear models. The VSTAR model with CNFs and the ST cointegration model in the previous papers are exemplified in detail,and thereafter illustrated within two corresponding macroeconomic data sets.

Ort, förlag, år, upplaga, sidor
Öerbro: Örebro University, 2013
Serie
Örebro Studies in Statistics, ISSN 1651-8608 ; 6
Nyckelord
Nonlinearity, Time series, Econometrics, Smooth transition, Common features, Cointegration, Forecasting, Residual-based, PPP.
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
Komplexa system - mikrodataanalys
Identifikatorer
urn:nbn:se:du-13253 (URN)978-91-7668-952-3 (ISBN)
Disputation
2013-10-01, Långhuset HSL 3, Örebro University, Örebro, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2013-11-11 Skapad: 2013-11-11 Senast uppdaterad: 2015-03-18Bibliografiskt granskad

Open Access i DiVA

fulltext(2974 kB)325 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 2974 kBChecksumma SHA-512
5e8c0f0c1b85fc7e7f1db85615ec257e1b5d7e57ee3008c8723ea0ef64731e1f1ab787fb40875069940929f7ee37dd8096a35caf6601a164f28ec271ec6eef76
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Li, DaoHe, Changli
Av organisationen
Statistik
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 362 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 843 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf