du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Cepstral separation difference: a novel approach for speech impairment quantification in Parkinson’s disease
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik. Malardalen University. (PAULINA)ORCID-id: 0000-0002-2752-3712
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.ORCID-id: 0000-0003-0403-338X
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik. (PAULINA)
2014 (Engelska)Ingår i: Biocybernetics and Biomedical Engineering, ISSN 0208-5216, Vol. 34, nr 1, s. 25-34Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper introduces a novel approach, Cepstral Separation Difference (CSD), for quantification of speech impairment in Parkinson’s disease (PD). CSD represents a ratio between the magnitudes of glottal (source) and supra-glottal (filter) log-spectrums acquired using the source-filter speech model. The CSD-based features were tested on a database consisting of 240 clinically rated running speech samples acquired from 60 PD patients and 20 healthy controls. The Guttmann (µ2) monotonic correlations between the CSD features and the speech symptom severity ratings were strong (up to 0.78). This correlation increased with the increasing textual difficulty in different speech tests. CSD was compared with some non-CSD speech features (harmonic ratio, harmonic-to-noise ratio and Mel-frequency cepstral coefficients) for speech symptom characterization in terms of consistency and reproducibility. The high intra-class correlation coefficient (>0.9) and analysis of variance indicates that CSD features can be used reliably to distinguish between severity levels of speech impairment. Results motivate the use of CSD in monitoring speech symptoms in PD.

Ort, förlag, år, upplaga, sidor
Elsevier, 2014. Vol. 34, nr 1, s. 25-34
Nyckelord [en]
Parkinson's disease; Speech processing; Dysarthria; Acoustic analysis; Speech cepstrum
Nationell ämneskategori
Teknik och teknologier
Forskningsämne
Komplexa system - mikrodataanalys, PAULINA - Uppföljning av Parkinsonsymptom från hemmet
Identifikatorer
URN: urn:nbn:se:du-12730DOI: 10.1016/j.bbe.2013.06.001ISI: 000333226500005OAI: oai:DiVA.org:du-12730DiVA, id: diva2:638297
Forskningsfinansiär
KK-stiftelsenTillgänglig från: 2013-07-29 Skapad: 2013-07-29 Senast uppdaterad: 2015-07-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Khan, TahaWestin, Jerker

Sök vidare i DiVA

Av författaren/redaktören
Khan, TahaWestin, JerkerDougherty, Mark
Av organisationen
Datateknik
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 724 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf