du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Classification of speech intelligibility in Parkinson's disease: Speech Impairment Classification
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik. Malardalen University, Vasteras 72123, Sweden. (PAULINA)ORCID-id: 0000-0002-2752-3712
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik. (PAULINA)ORCID-id: 0000-0003-0403-338X
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik. (PAULINA)
2014 (Engelska)Ingår i: Biocybernetics and Biomedical Engineering, ISSN 0208-5216, Vol. 34, nr 1, s. 35-45Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A problem in the clinical assessment of running speech in Parkinson's disease (PD) is to track underlying deficits in a number of speech components including respiration, phonation, articulation and prosody, each of which disturbs the speech intelligibility. A set of 13 features, including the cepstral separation difference and Mel-frequency cepstral coefficients were computed to represent deficits in each individual speech component. These features were then used in training a support vector machine (SVM) using n-fold cross validation. The dataset used for method development and evaluation consisted of 240 running speech samples recorded from 60 PD patients and 20 healthy controls. These speech samples were clinically rated using the Unified Parkinson's Disease Rating Scale Motor Examination of Speech (UPDRS-S). The classification accuracy of SVM was 85% in 3 levels of UPDRS-S scale and 92% in 2 levels with the average area under the ROC (receiver operating characteristic) curves of around 91%. The strong classification ability of selected features and the SVM model supports suitability of this scheme to monitor speech symptoms in PD

Ort, förlag, år, upplaga, sidor
Elsevier, 2014. Vol. 34, nr 1, s. 35-45
Nyckelord [en]
Parkinson's disease, Speech processing, Dysarthria, Support vector machine, Tele-monitoring.
Nationell ämneskategori
Teknik och teknologier
Forskningsämne
Komplexa system - mikrodataanalys, PAULINA - Uppföljning av Parkinsonsymptom från hemmet
Identifikatorer
URN: urn:nbn:se:du-13130DOI: 10.1016/j.bbe.2013.10.003ISI: 000333226500006OAI: oai:DiVA.org:du-13130DiVA, id: diva2:655236
Projekt
PAULINA
Forskningsfinansiär
KK-stiftelsenTillgänglig från: 2013-10-10 Skapad: 2013-10-10 Senast uppdaterad: 2015-07-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Khan, TahaWestin, Jerker

Sök vidare i DiVA

Av författaren/redaktören
Khan, TahaWestin, JerkerDougherty, Mark
Av organisationen
Datateknik
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 681 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf