du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluation of a sensor algorithm for motor state rating in Parkinson's disease
Högskolan Dalarna, Akademin Industri och samhälle, Mikrodataanalys.
Visa övriga samt affilieringar
Antal upphovsmän: 122019 (Engelska)Ingår i: Parkinsonism & Related Disorders, ISSN 1353-8020, E-ISSN 1873-5126, Vol. 64, s. 112-117Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

INTRODUCTION: A treatment response objective index (TRIS) was previously developed based on sensor data from pronation-supination tests. This study aimed to examine the performance of TRIS for medication effects in a new population sample with Parkinson's disease (PD) and its usefulness for constructing individual dose-response models.

METHODS: Twenty-five patients with PD performed a series of tasks throughout a levodopa challenge while wearing sensors. TRIS was used to determine motor changes in pronation-supination tests following a single levodopa dose, and was compared to clinical ratings including the Treatment Response Scale (TRS) and six sub-items of the UPDRS part III.

RESULTS: As expected, correlations between TRIS and clinical ratings were lower in the new population than in the initial study. TRIS was still significantly correlated to TRS (rs = 0.23, P < 0.001) with a root mean square error (RMSE) of 1.33. For the patients (n = 17) with a good levodopa response and clear motor fluctuations, a stronger correlation was found (rs = 0.38, RMSE = 1.29, P < 0.001). The mean TRIS increased significantly when patients went from the practically defined off to their best on state (P = 0.024). Individual dose-response models could be fitted for more participants when TRIS was used for modelling than when TRS ratings were used.

CONCLUSION: The objective sensor index shows promise for constructing individual dose-response models, but further evaluations and retraining of the TRIS algorithm are desirable to improve its performance and to ensure its clinical effectiveness.

Ort, förlag, år, upplaga, sidor
2019. Vol. 64, s. 112-117
Nyckelord [en]
Independent evaluation, Levodopa challenge test, Machine learning algorithms, Parkinson's disease, Wearable sensors
Nationell ämneskategori
Annan medicinteknik
Forskningsämne
Komplexa system - mikrodataanalys; Komplexa system - mikrodataanalys
Identifikatorer
URN: urn:nbn:se:du-29857DOI: 10.1016/j.parkreldis.2019.03.022ISI: 000487567800016PubMedID: 30935826Scopus ID: 2-s2.0-85063430752OAI: oai:DiVA.org:du-29857DiVA, id: diva2:1302557
Tillgänglig från: 2019-04-05 Skapad: 2019-04-05 Senast uppdaterad: 2019-10-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Thomas, IliasWestin, Jerker

Sök vidare i DiVA

Av författaren/redaktören
Thomas, IliasWestin, Jerker
Av organisationen
MikrodataanalysDatateknik
I samma tidskrift
Parkinsonism & Related Disorders
Annan medicinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 48 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf