du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Progress on the modeling of the collisional energy transfer mechanism in unimolecular reactions
1997 (engelsk)Inngår i: Berichte Der Bunsen-Gesellschaft: Physical Chemistry, Chemical Physics, ISSN 0005-9021, Vol. 101, s. 574-580Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The RRKM theory of unimolecular reaction rates is a statistical mechanical theory based on an assumption of microcanonical equilibrium in the reactant phase space. The energy transfer in reactant medium collisions was originally described by a canonical strong collision assumption, i.e., an assumption of full thermal equilibration in each collision. In our work we first introduce a microcanonical strong collision assumption which gives the RRKM theory a consistent form. We then introduce parametrizations of the degree of weakness (nonergodicity) of the collisions. A concept of collision efficiency is defined. The weakness of the collision is expressed in terms of reduced subsets of active reactant and medium degrees of freedom. The corresponding partially ergodic collision theory (PECT) yields physical functional forms of the collisional energy transfer kernel P(E,E). In order to resolve the energy and temperature dependence and the dependence on interaction strength a multiple encounter theory is introduced (PEMET). Initially each encounter may be described by a semiempirical PECT model. Eventually the encounters may be resolved by quantum dynamical calculations of the semiclassical or CAQE (classical approach quantum encounter) type. Simple statistical collision models only distinguish between hits and misses . In reality the energy transfer efficiency exhibits characteristic fall off with increasing impact parameter b. This b-dependence can be explicitly accounted for in the master equation for the reaction rate coefficient.

sted, utgiver, år, opplag, sider
1997. Vol. 101, s. 574-580
HSV kategori
Identifikatorer
URN: urn:nbn:se:du-23350OAI: oai:DiVA.org:du-23350DiVA, id: diva2:1046346
Tilgjengelig fra: 2016-11-14 Laget: 2016-11-14 Sist oppdatert: 2017-11-29bibliografisk kontrollert
Inngår i avhandling
1. Dynamical theory of collisional energy transfer between reactant and medium molecules
Åpne denne publikasjonen i ny fane eller vindu >>Dynamical theory of collisional energy transfer between reactant and medium molecules
2001 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
sted, utgiver, år, opplag, sider
Göteborg: Göteborgs universitet, 2001
HSV kategori
Identifikatorer
urn:nbn:se:du-23355 (URN)91-974011-0-2 (ISBN)
Disputas
(engelsk)
Opponent
Veileder
Tilgjengelig fra: 2016-11-14 Laget: 2016-11-14 Sist oppdatert: 2016-11-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Søk i DiVA

Av forfatter/redaktør
Svedung, Harald
I samme tidsskrift
Berichte Der Bunsen-Gesellschaft: Physical Chemistry, Chemical Physics

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 26 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf