du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Euclidean similarity measurement approach for hotel rating data analysis
Högskolan Dalarna, Akademin Industri och samhälle, Informatik.ORCID-id: 0000-0003-3681-8173
Högskolan Dalarna, Akademin Industri och samhälle, Informatik.
Högskolan Dalarna, Akademin Industri och samhälle, Informatik.ORCID-id: 0000-0003-2110-0943
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Proceedings 2017 2nd IEEE International Conference on Cloud Computing and Big Data Analysis, ICCCBDA 2017, 2017, s. 293-298Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The most widely used method in recommendation systems is collaborative filtering, of which, a critical step is to analyze a user's preferences and make recommendations of products or services based on similarity analysis with other users' ratings. However, collaborative filtering is less usable for recommendation facing the 'cold start' problem, i.e. few comments being given to products or services. To tackle this problem, we propose an improved method that combines collaborative filtering and data classification. We use hotel recommendation data to test the proposed method. The accuracy of the recommendation is determined by the rankings. Evaluations regarding the accuracies of Top-3 and Top-10 recommendation lists using the 10-fold cross-validation method and ROC curves are conducted. The results show that the Top-3 hotel recommendation list proposed by the combined method has the superiority of the recommendation performance than the Top-10 list under the cold start condition in most of the times.

Ort, förlag, år, upplaga, sidor
2017. s. 293-298
Nyckelord [en]
collaborative filtering, ranking systems, recommendation systems, ROC curves
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik
Forskningsämne
Komplexa system - mikrodataanalys
Identifikatorer
URN: urn:nbn:se:du-25650DOI: 10.1109/ICCCBDA.2017.7951927ISI: 000414283700054Scopus ID: 2-s2.0-85024390956ISBN: 978-1-5090-4498-6 (tryckt)ISBN: 978-1-5090-4499-3 (digital)OAI: oai:DiVA.org:du-25650DiVA, id: diva2:1128871
Konferens
2nd IEEE International Conference on Cloud Computing and Big Data Analysis, ICCCBDA 2017
Tillgänglig från: 2017-07-31 Skapad: 2017-07-31 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Song, William WeiForsman, AndersAvdic, AndersÅkerblom, Leif

Sök vidare i DiVA

Av författaren/redaktören
Song, William WeiForsman, AndersAvdic, AndersÅkerblom, Leif
Av organisationen
Informatik
Systemvetenskap, informationssystem och informatik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 173 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf