du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Robustness in constructing a network of induced emissions based on GPS-tracking data
Högskolan Dalarna, Akademin Industri och samhälle, Mikrodataanalys.
Högskolan Dalarna, Akademin Industri och samhälle, Mikrodataanalys.
2017 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

The mobility of people, freight and information is fundamental to economic and social activities such as commuting, manufacturing, distributing consumer goods and supplying energy. There are two major problems that arise as a result of mobility. The first is economic cost and the second is environmental impact which is of increasing concern in sustainable development due to emission levels, particularly as a result of car use. This study focuses on constructing a network of induced emissions (NOIEs) by using three models and checking the robustness of NOIEs under varying parameters and models. The three models are Stead’s model, the NAEI model, and Oguchi’s model. This study uses the Swedish city of Borlänge as the case study.

Calculating CO2 emissions by constructing the NOIEs using Stead’s model appears to give an underestimation when compared to results from a NOIEs which applies Oguchi’s model. Results when applying the NAEI model in constructing a NOIEs also give an underestimation compared to a NOIEs applying Oguchi’s model. Applying the NAEI model is, however, more accurate than applying Stead’s model in constructing a NOIEs.

The outcomes of this study show that constructing a NOIEs is robust using Oguchi’s model. This model is preferable since it takes into account more important variables such as driving behavior and the length of the road segments which have a significant impact when estimating CO2 emissions.

Ort, förlag, år, upplaga, sidor
2017.
Nyckelord [en]
CO2 Emissions, Model Robustness, GPS-Tracking Data, Car Mobility.
Nationell ämneskategori
Tvärvetenskapliga studier inom samhällsvetenskap
Identifikatorer
URN: urn:nbn:se:du-25848OAI: oai:DiVA.org:du-25848DiVA, id: diva2:1135422
Tillgänglig från: 2017-08-23 Skapad: 2017-08-23 Senast uppdaterad: 2018-01-13

Open Access i DiVA

fulltext(1422 kB)46 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1422 kBChecksumma SHA-512
32038125f2742dfc38ac3d587c01d6e24f5305d29acffa2c60ce4c5274ed860ef9ad0a8b0293480bc31f603a0ccddc9abc31a9da6e3b750adba84cd9f92af619
Typ fulltextMimetyp application/pdf

Av organisationen
Mikrodataanalys
Tvärvetenskapliga studier inom samhällsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 46 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 121 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf