du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Feasibility of a multi-sensor data fusion method for assessment of Parkinson’s disease motor symptoms
Högskolan Dalarna, Akademin Industri och samhälle, Mikrodataanalys.ORCID-id: 0000-0002-1548-5077
Gothenburg University.
Uppsala University.
Uppsala University.
Visa övriga samt affilieringar
2018 (Engelska)Konferensbidrag, Poster (med eller utan abstract) (Refereegranskat)
Abstract [en]

Title: Feasibility of a multi-sensor data fusion method for assessment of Parkinson’s disease motor symptoms

Objective: To assess the feasibility of measuring Parkinson’s disease (PD) motor symptoms with a multi-sensor data fusion method. More specifically, the aim is to assess validity, reliability and sensitivity to treatment of the methods.

Background: Data from 19 advanced PD patients (Gender: 14 males and 5 females, mean age: 71.4, mean years with PD: 9.7, mean years with levodopa: 9.5) were collected in a single center, open label, single dose clinical trial in Sweden [1].

Methods: The patients performed leg agility and 2-5 meter straight walking tests while wearing motion sensors on their limbs. They performed the tests at baseline, at the time they received the morning dose, and at pre-specified time points until the medication wore off. While performing the tests the patients were video recorded. The videos were observed by three movement disorder specialists who rated the symptoms using a treatment response scale (TRS), ranging from -3 (very off) to 3 (very dyskinetic). The sensor data consisted of lower limb data during leg agility, upper limb data during walking, and lower limb data during walking. Time series analysis was performed on the raw sensor data extracted from 17 patients to derive a set of quantitative measures, which were then used during machine learning to be mapped to mean ratings of the three raters on the TRS scale. Combinations of data were tested during the machine learning procedure.

Results: Using data from both tests, the Support Vector Machines (SVM) could predict the motor states of the patients on the TRS scale with a good agreement in relation to the mean ratings of the three raters (correlation coefficient = 0.92, root mean square error = 0.42, p<0.001). Additionally, there was good test-retest reliability of the SVM scores during baseline and second tests with intraclass-correlation coefficient of 0.84. Sensitivity to treatment for SVM was good (Figure 1), indicating its ability to detect changes in motor symptoms. The upper limb data during walking was more informative than lower limb data during walking since SVMs had higher correlation coefficient to mean ratings.  

Conclusions: The methodology demonstrates good validity, reliability, and sensitivity to treatment. This indicates that it could be useful for individualized optimization of treatments among PD patients, leading to an improvement in health-related quality of life.

Ort, förlag, år, upplaga, sidor
2018.
Nationell ämneskategori
Signalbehandling
Forskningsämne
Komplexa system - mikrodataanalys
Identifikatorer
URN: urn:nbn:se:du-28773OAI: oai:DiVA.org:du-28773DiVA, id: diva2:1257071
Konferens
International Congress of Parkinson’s Disease and Movement Disorders (MDS), Hong Kong, 5-9 October 2018
Tillgänglig från: 2018-10-18 Skapad: 2018-10-18 Senast uppdaterad: 2018-10-22Bibliografiskt granskad

Open Access i DiVA

fulltext(273 kB)41 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 273 kBChecksumma SHA-512
ef07be13003c418c965b05856881a6b035cb66631a83739120c1278b023e7e221304d535630bb4b48b87e86407c03845f3b146eb3514043db7a6c619448e8a4d
Typ fulltextMimetyp application/pdf

Personposter BETA

Aghanavesi, Somayeh

Sök vidare i DiVA

Av författaren/redaktören
Aghanavesi, Somayeh
Av organisationen
Mikrodataanalys
Signalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 41 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 367 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf