du.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluation of Supervised Machine LearningAlgorithms for Detecting Anomalies in Vehicle’s Off-Board Sensor Data
Högskolan Dalarna, Akademin Industri och samhälle, Mikrodataanalys.
2018 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

A diesel particulate filter (DPF) is designed to physically remove diesel particulate matter or soot from the exhaust gas of a diesel engine. Frequently replacing DPF is a waste of resource and waiting for full utilization is risky and very costly, so, what is the optimal time/milage to change DPF? Answering this question is very difficult without knowing when the DPF is changed in a vehicle.

We are finding the answer with supervised machine learning algorithms for detecting anomalies in vehicles off-board sensor data (operational data of vehicles). Filter change is considered an anomaly because it is rare as compared to normal data.

Non-sequential machine learning algorithms for anomaly detection like oneclass support vector machine (OC-SVM), k-nearest neighbor (K-NN), and random forest (RF) are applied for the first time on DPF dataset. The dataset is unbalanced, and accuracy is found misleading as a performance measure for the algorithms. Precision, recall, and F1-score are found good measure for the performance of the machine learning algorithms when the data is unbalanced. RF gave highest F1-score of 0.55 than K-NN (0.52) and OCSVM (0.51). It means that RF perform better than K-NN and OC-SVM but after further investigation it is concluded that the results are not satisfactory. However, a sequential approach should have been tried which could yield better result.

Ort, förlag, år, upplaga, sidor
2018.
Nyckelord [en]
Anomaly detection, rule-based, one class support vector machine, k-nearest neighbor, random forest, confusion matrix, accuracy, precision, recall, F1-score
Nationell ämneskategori
Tvärvetenskapliga studier inom samhällsvetenskap
Identifikatorer
URN: urn:nbn:se:du-28962OAI: oai:DiVA.org:du-28962DiVA, id: diva2:1266683
Tillgänglig från: 2018-11-29 Skapad: 2018-11-29

Open Access i DiVA

fulltext(1543 kB)35 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1543 kBChecksumma SHA-512
afa37ba56e7ca9d933a81f5a6b1d410690345dd060c04a5084c83d818ed0f88586aee117f832dc8e92dbd5d8b319f507ef38d3b22cbb4f14f62c81aa7d9e98f9
Typ fulltextMimetyp application/pdf

Av organisationen
Mikrodataanalys
Tvärvetenskapliga studier inom samhällsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 35 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 48 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf