du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Unified thermodynamic model to calculate COP of diverse sorption heat pump cycles: Adsorption, absorption, resorption, and multistep crystalline reactions
Högskolan Dalarna, Akademin Industri och samhälle, Energiteknik. SaltX Technology; Mälardalens högskola. (Reesbe)
2019 (engelsk)Inngår i: International journal of refrigeration, ISSN 0140-7007, E-ISSN 1879-2081, Vol. 99, s. 382-392Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A straightforward thermodynamic model is developed in this work to analyze the efficiency limit of diverse sorption systems. A method is presented to quantify the dead thermal mass of heat exchangers Solid and liquid sorbents based on chemisorption or physical adsorption are accommodated. Four possible single-effect configurations are considered: basic absorption or adsorption (separate desorber, absorber, condenser, and evaporator); separate condenser/evaporator (two identical sorbent-containing reactors with a condenser and a separate direct expansion evaporator); combined condenser/evaporator (one salt-containing reactor with a combined condenser/evaporator module); and resorption (two sorbent-containing reactors, each with a different sorbent). The analytical model was verified against an empirical heat and mass transfer model derived from component experimental results. It was then used to evaluate and determine the optimal design for an ammoniate salt-based solid/gas sorption heat pump for a space heating application. The effects on system performance were evaluated with respect to different working pairs, dead thermal mass factors, and system operating temperatures. The effect of reactor dead mass as well as heat recovery on system performance was also studied for each configuration. Based on the analysis in this work, an ammonia resorption cycle using LiCl/NaBr as the working pair was found to be the most suitable single-effect cycle for space heating applications. The maximum cycle heating coefficient of performance for the design conditions was 1.50 with 50% heat recovery and 1.34 without heat recovery.

sted, utgiver, år, opplag, sider
2019. Vol. 99, s. 382-392
Emneord [en]
Resorption, Ammonia, Sorption heat pump, Dead thermal mass, Analytical, Heat recovery
HSV kategori
Forskningsprogram
Energi, skog och byggd miljö
Identifikatorer
URN: urn:nbn:se:du-29227DOI: 10.1016/j.ijrefrig.2018.12.021ISI: 000461334900038Scopus ID: 2-s2.0-85060929731OAI: oai:DiVA.org:du-29227DiVA, id: diva2:1274323
Forskningsfinansiär
Knowledge FoundationTilgjengelig fra: 2018-12-29 Laget: 2018-12-29 Sist oppdatert: 2019-03-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst tilgjengelig fra 2020-06-30 23:36
Tilgjengelig fra 2020-06-30 23:36

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Blackman, Corey

Søk i DiVA

Av forfatter/redaktør
Blackman, Corey
Av organisasjonen
I samme tidsskrift
International journal of refrigeration

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 231 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf