du.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving Hashtag Recommendation for Instagram Images by Considering Hashtag Relativity and Sentiment.
Högskolan Dalarna, Akademin Industri och samhälle, Mikrodataanalys.
Högskolan Dalarna, Akademin Industri och samhälle, Mikrodataanalys.
2018 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 10 poäng / 15 hpOppgave
Abstract [en]

Extracting knowledge from user-generated content (UGC) in social media platforms is a very hot research topic in the area of machine learning, nonetheless, the main challenge resides in the fact that UGC carries inference, abstraction and subjectivity alongside objectivity. With the aim of recognising the importance of subjectivity as an influential aspect for providing humanoid results from a machine learning algorithm, this study proposes a novel approach to improve Instagram hashtag recommendation by considering sentiment that can be expressed for images. Two main points are studied in this thesis; evaluating the relativity of Instagram image to hashtag for both objective and subjective features of an image and the effect of sentiment on said relativity. This work examines three machine learning methods for hashtag recommendation: AWS service, developed algorithms with and without sentiment considerations. The models are tested on a collected dataset of de-identified Instagram posts in location London gathered from public profiles. The results show that considering sentiment significantly improves Instagram hashtag recommendation.

sted, utgiver, år, opplag, sider
2018.
Emneord [en]
Machine learning, social media, Instagram, hashtag, prediction, sentiment, relativity, feature extraction, image processing, recommendation system.
HSV kategori
Identifikatorer
URN: urn:nbn:se:du-29455OAI: oai:DiVA.org:du-29455DiVA, id: diva2:1287026
Tilgjengelig fra: 2019-02-08 Laget: 2019-02-08

Open Access i DiVA

fulltext(1029 kB)120 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1029 kBChecksum SHA-512
4e5909618f35fd5daf234a61e6ae45e28aa4d91af8bf813bfdb38da1769441f0910ccc4585f347050e906568e4506fd4e57c93a0050f491350e49ddb37043878
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 120 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 299 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf