du.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Motion sensor-based assessment of Parkinson’s disease motor symptoms during leg agility tests: results from levodopa challenge
Dalarna University, School of Technology and Business Studies, Microdata Analysis.ORCID iD: 0000-0002-1548-5077
Show others and affiliations
2019 (English)In: IEEE journal of biomedical and health informatics, ISSN 2168-2194, E-ISSN 2168-2208Article in journal (Refereed) Epub ahead of print
Abstract [en]

Parkinson’s disease (PD) is a degenerative, progressive disorder of the central nervous system that mainly affects motor control. The aim of this study was to develop data-driven methods and test their clinimetric properties to detect and quantify PD motor states using motion sensor data from leg agility tests. Nineteen PD patients were recruited in a levodopa single dose challenge study. PD patients performed leg agility tasks while wearing motion sensors on their lower extremities. Clinical evaluation of video recordings was performed by three movement disorder specialists who used four items from the motor section of the Unified PD Rating Scale (UPDRS), the treatment response scale (TRS) and a dyskinesia score. Using the sensor data, spatiotemporal features were calculated and relevant features were selected by feature selection. Machine learning methods like support vector machines (SVM), decision trees and linear regression, using 10-fold cross validation were trained to predict motor states of the patients. SVM showed the best convergence validity with correlation coefficients of 0.81 to TRS, 0.83 to UPDRS #31 (body bradykinesia and hypokinesia), 0.78 to SUMUPDRS (the sum of the UPDRS items: #26-leg agility, #27-arising from chair and #29-gait), and 0.67 to dyskinesia. Additionally, the SVM-based scores had similar test-retest reliability in relation to clinical ratings. The SVM-based scores were less responsive to treatment effects than the clinical scores, particularly with regards to dyskinesia. In conclusion, the results from this study indicate that using motion sensors during leg agility tests may lead to valid and reliable objective measures of PD motor symptoms.

Place, publisher, year, edition, pages
IEEE, 2019.
National Category
Physiotherapy Other Medical Engineering
Research subject
Complex Systems – Microdata Analysis
Identifiers
URN: urn:nbn:se:du-29542DOI: 10.1109/JBHI.2019.2898332OAI: oai:DiVA.org:du-29542DiVA, id: diva2:1290650
Available from: 2019-02-21 Created: 2019-02-21 Last updated: 2019-06-05Bibliographically approved

Open Access in DiVA

fulltext(619 kB)55 downloads
File information
File name FULLTEXT01.pdfFile size 619 kBChecksum SHA-512
ce55c472380290bc5d45baf039f569bded7c19c63c8b7fd1d8fa0a69da917b7553a64d9af0b37d80b05d7f46689ad97a3b2e6b4bd325bd6ce60147e8f960618d
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Aghanavesi, Somayeh

Search in DiVA

By author/editor
Aghanavesi, Somayeh
By organisation
Microdata Analysis
In the same journal
IEEE journal of biomedical and health informatics
PhysiotherapyOther Medical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 55 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 488 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • chicago-author-date
  • chicago-note-bibliography
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf